
Authors (group 10):

John Arne Øye Kristian Greve Hagen
Oscar Aarseth Christian Berg Skjetne
Jaroslav Rakhmatoullin Maria Belen Gallego Garcia

Supervisor:

Alfredo Perez Fernandez

IT2901 - Informatics Project 2
Department of Computer and

Information Science

May 2011

Table of Contents

1 Introduction 7
1.1 Product description . 7

2 Project Management 9
2.1 Pre-studies . 9

2.1.1 Alternative Solutions 10
2.2 Project Schedule . 10

2.2.1 Phases . 10
2.2.2 Milestones . 11

2.3 Stakeholders . 11
2.3.1 The Client . 12
2.3.2 Team Organization . 12

2.4 Development model . 12
2.4.1 Borrowed elements . 13

2.5 Development environment . 14
2.6 Risk Analysis . 15
2.7 WBS . 17
2.8 Work process reflections . 17
2.9 Work distribution . 22

3 Requirements specification 25
3.1 Functional requirements . 25
3.2 Use case diagrams . 27

3.2.1 Basis city exploration 28
3.2.2 Tailoring . 29
3.2.3 Sharing . 30

3.3 Textual Use Cases . 30
3.4 Non-functional requirements 39
3.5 Requirements History . 40

4 System Architecture 47
4.1 Overall Architecture . 47
4.2 Architecture design . 48

4.2.1 Architecture classes . 50
4.2.2 Architecture database 50
4.2.3 Architecture sequence diagrams 52

3

5 Implementation 57
5.1 Packages . 58
5.2 Implementation design . 58

5.2.1 User interface . 59
5.2.2 Quick Actions . 59
5.2.3 Activities . 60
5.2.4 Implementation Classes 64
5.2.5 Implementation Database 70

5.3 Implemented default Android components 70

6 Testing 71
6.1 Client testing . 71
6.2 Scenarios . 71
6.3 Test Cases . 73

7 Follow-up Work 77
7.1 Back end system . 77
7.2 Web Portal . 77
7.3 Sharing of Tours . 78
7.4 Advanced Rating System . 78
7.5 Social Media Pages . 78
7.6 Plug-in System . 79
7.7 Support for non-SI units . 79
7.8 Translation . 79
7.9 Integration with UbiCompForAll composition tool 80

A Meetings 81
A.1 With Group . 82

A.1.1 20. Jan. 2011 . 82
A.1.2 6. Jan. 2011 . 85
A.1.3 11. March. 2011 . 88

A.2 With Client . 89
A.2.1 24. Jan. 2011 . 89
A.2.2 31. Jan. 2011 . 89
A.2.3 7. Feb. 2011. 89
A.2.4 14. Feb. 2011 . 90
A.2.5 28. Feb. 2011 . 90

A.3 With Supervisor . 92
A.3.1 24. Jan. 2011 . 92
A.3.2 7. Feb. 2011 . 92

B Status Reports 93
B.1 Status report: sprints 1 and 2 93
B.2 Status report: sprints 3 and 4 94
B.3 Status report: sprint 5 . 95
B.4 Status report: sprint 6 . 97
B.5 Status report: sprint 7 . 97
B.6 Status report: sprint 8 . 98

B.7 Status report: last call . 98

C Backlog 101
C.1 Project backlog . 101
C.2 Sprints . 103

C.2.1 Sprint 1 . 103
C.2.2 Sprint 2 . 104
C.2.3 Sprint 3 . 105
C.2.4 Sprint 4 . 106
C.2.5 Sprint 5 . 107
C.2.6 Sprint 6 . 108
C.2.7 Sprint 7 . 109
C.2.8 Sprint 8 . 110
C.2.9 Last call . 111

D User Manual 113
D.1 Exploring . 113
D.2 Tailoring . 120
D.3 Sharing & Updating . 126

E List of Figures 131

F List of Tables 135

Glossary 139

Bibliography 140

Chapter 1

Introduction

The following document is the result of the work of six students on a project

centered around the science of planning and developing an information sys-

tem. The project emulates a real software development endeavor because an

external customer is serving the request. As such the project mandates an

elaborate documentation of both the development process and the resulting

product. In our case, the product is a tourist application for mobile devices

running Android 2.2[1].

1.1 Product description

The core idea The City Explorer is an attempt to fill a gap in the market

for mobile tourist guides. In addition to facilitating the work of

tourist offices, City Explorer

also enables regular tourists

to contribute. The main ob-

jective is to help potential

users in exploration of new

cities by giving them a pool

of existing points of interest

and tours, as well as allow-

ing users to create their own

points of interest and tours.

Details A tour is a col-

lection of points of interest,

such as sightseeing destina-

tions, churches or even shopping malls. The content of a tour is not limited to

7

8 CHAPTER 1. INTRODUCTION

a specific field of interest beyond what might be associated with the provider

who owns it, such as the tourist office or an architecture association. In or-

der to obtain such tours, the user has to pick a provider from an internally

stored list and browse through their repository of tours. The user may also

download single Point of Interest (PoI) without selecting a particular tour.

Once the user has obtained or created an interesting tour, they will be able

perform a number of activities with highlights including:

• Getting directions (navigation) to a particular destination in the tour

using Google Maps

• Displaying a description, a picture and other useful information asso-

ciated with a particular destination

• Scheduling a tour by their preferences or by following an attached time

schedule, if the creator of the tour has specified this

• Displaying a map with a path through all of the destinations as well as

viewing each stop separately

• Viewing all stops in a tour simultaneously on a map without the sug-

gested path between them

• Going through a tour (both as an actual tour or simply by browsing

all the destinations on the device at home)

• Adding destinations to a tour and removing undesired destinations.

Chapter 2

Project Management

A project is usually defined as a finite event. It has objectives, tasks and

limitations in human resources as well as the implicit time constraint. This

chapter describes a plan of actions during the three phases our project will

traverse and presents an oversight of the activities within those phases. We

will also discuss the applied tools and techniques and how they have improved

the outcome.

2.1 Pre-studies

According to research conducted by the client[2], there is a number of similar

applications. Unfortunately, they lack in functionality on one or several of

the following points:

• exploitation of potential context awareness inherent to mobile devices

• geographical wideness (support for many cities)

• quality of the user interface

• tailoring tours according to users’ desires

While the collected opinions of potential users express an interest in a better

application, they were not the direct cause of our client’s efforts to suggest an

application as specified by the requirements specification (see chapter 3). The

goal of our client is rather exploration in the area of end user composition of

mobile services[3]. In order to facilitate the development of the application,

our client has chosen the open source Apache license.

9

10 CHAPTER 2. PROJECT MANAGEMENT

2.1.1 Alternative Solutions

The description of the project is rather specific and the client’s requests

are unambiguous. There might be room for suggestions, but not misinter-

pretation.

Existing applications do provide interactive maps, information and de-

scriptions of places, selection of favourites and type-based filtering of des-

tinations. The City Explorer is not very original in that respect, but two

features of City Explorer that in our opinions make this project very inter-

esting are

• decentralized generation of contents (as in there may be several service

providers and users may share their own places and tours)

• an open source model with a plug-in system as an important (future)

goal.

These characteristics turn City Explorer into a potentially global application

which in our view is more exciting than a regular school project.

2.2 Project Schedule

2.2.1 Phases

The completion of the project is preceded by three phases. They are the

“Plan and Design”, “Iterative Development” and “Last Call”. All three

phases are estimated to fit within the time frame of 16 weeks starting on the

20th of January and ending on the 15th of May. These dates coincide with

the dates of our first meeting and the final deadline for this document.

Plan and Design The initial phase ran for three weeks, starting on 20th

of January and ending on 6th of February. This time was spent working out

the details of the schedule and establishing routines.

Iterative Development The main part of the project ran for 12 weeks

with one week in the end set aside for testing. It started on 7th of February

and ended on 8th of May. The main objective in this phase was to produce

a working application. Every iteration will be referred to as a ”sprint”.

Documentation for each sprint is worked out at the beginning of the sprint

in a ”sprint backlog”.

2.3. STAKEHOLDERS 11

Last Call The finalization of this document will find place in the last phase

and final week of our schedule. It started on 9th of May and ended on 15th of

May. Some important tasks will include proof reading, removal of reproduced

information, review by external parts and formatting.

2.2.2 Milestones

The iterative phase of the project is defined by a few milestones. They are

intermediate project objectives and help us to keep the project on schedule.

A secondary purpose of the milestones is to tell the client when she can

expect the various requirements to be implemented.

The milestones concerning this report are set by the course coordinator,

while milestones concerning the requirements were set by us during the plan-

ning phase. Unfortunately, due to unforeseen delays, the milestones were

postponed (See appendix B section B.2). The following list contains the

updated dates for the completion of the various parts of the application.

31 Jan. Delivery (16:00): Project report - VERY preliminary version

28 Feb. Delivery (16:00): Project Report - mid-semester version

13 Mar. Basis requriments fullfilled

08 Apr. Delivery (16:00): Project report - for final comments from supervisor.

25 Mar. Tailoring requirements fullfilled

15 Apr. Sharing requriments fullfilled

02 May Delivery of application to the client for final testing

15 May Delivery (16:00): Project report - final version

23-24 May Presentation of projects

2.3 Stakeholders

Since this is not a big commercial project, the number of interested parties

is limited to the client and the six members responsible for the development.

The client is presumably conducting market research and is looking to en-

tice third parties in future development by demonstrating the merits of this

project. Our interest is simple, we like to write JavaTMcode[4] and aim to

get a good grade in this course.

12 CHAPTER 2. PROJECT MANAGEMENT

2.3.1 The Client

Our client is the independent research institute SINTEF[5] represented by

Jacqueline Floch. She is responsible for the unpublished paper “A Framework

For User Tailored City Exploration”[2]. In the context of this paper, she has

requested this application. We are also told that this will be incorporated

under the larger umbrella of the research project UbiCompForAll[3]. The

idea of UbiCompForAll is about providing support to end users so they can

easily compose service behaviours in ubiquitous service environments.

2.3.2 Team Organization

At the start of this project, the group consisted of the six authors mentioned

on the front page. We have chosen not to assign specific roles to any of

the members to divide the responsibility for the project equally among all

members. This flat structure seems suitable because everyone involved will

receive the same grade. Besides, when everyone shares roles, it is impossible

to blame failure in a specific area of the project (e.g. management, docu-

mentation, development) on a single individual. The decision to have a flat

group structure has not been without problems. This is discussed in more

detail in the work process reflections section, 2.8.

2.4 Development model

A traditional Software Development Life Cycle is based on a struc-

tured step-by-step approach to developing systems1. The steps which may

be considered normal in such a model include a preliminary investigation, re-

quirement analysis, logical and physical design, implementation, maintenance

and deployment. None of the steps may be executed before the preceding

step is finished. Because of this, the whole process can be slow and cumber-

some. It does not allow a team to produce prototypes in a short time period

and the users of the application are involved only in the initial phases. This

means that any feedback from the users has to wait until the first public

release candidate, which may be too late in our case if the client finds our

implementation unsatisfactory.

Rapid Application Development is a more recent and flexible approach

to development, some times referred to as Agile Development models. The

1The paragraphs about RAD and SDLC are based on pp. 189-194[6]

2.4. DEVELOPMENT MODEL 13

main idea of RAD is to compress all of the phases found in a traditional

SDLC into several short iterations. From the iterative approach (repeating

all phases) follows a clearer understanding of the requirements for the system

as well as a closer match of user expectations. This is not an argument

against the quality of requirement analysis in traditional SDLCs, but it is

very important in our case to understand the problem at hand from early on

and be able to adopt to modifications in the requirements.

This point is crucial for our decision to adopt a RAD approach and to bor-

row elements from different Agile methodologies in our development model.

Other reasons include:

• We can not spend a substantial portion of the allocated time in the

beginning of the project developing an elaborate plan because of the

client’s request for a prototype after the second meeting

• The client has warned us that some of the requirements may change

because some aspects of the system are still under investigation

• We are free to suggest and implement new functionality at any time

during the project

• The client requested weekly meetings with reports and presentations

of the application. For meeting minutes, see appendix A.

• Some of the group members are familiar with elements from SCRUM

[7] and Extreme Programming [8]

• A rigid time limit

• The different modules of the application can be developed in parallel

to each other

2.4.1 Borrowed elements

Our development model consists of several elements from Agile models such

as SCRUM and Extreme Programming. We will now present a descriptions

of those elements and how we have adopted them.

The Backlog The backlog is located in appendix C. The concept of backlog

offered by Scrum encourages developers to record all features of an applica-

tion. The content of the recorded list is usually based on use scenarios. All

items in this list are prioritized according to the needs of the client while

the time needed to complete each task is estimated by the team. The most

important tasks are then chosen for implementation in the next sprint (RAD

14 CHAPTER 2. PROJECT MANAGEMENT

iteration). That point in our backlog is identical to any other backlog, but

other concepts vary:

• Our items’ priority is not displayed in the backlog because they are

based on the client specified priorities from the requirements specifica-

tion (see section 3)

• Our items represent work packages (see section 2.1) as well as individual

tasks or modules of the application

Pair Programming This concept is borrowed from Extreme Program-

ming and is rather self explanatory. Our slight modification of this concept

is that we use several computers instead of one and a pair programming ses-

sion may have more than two participants. We find this way of working very

helpful because we are able to help each other with problems as soon as they

arise.

2.5 Development environment

In order to save valuable time at the beginning of the project, we chose to

write the application in the Eclipse IDE. The time saving argument is not

the only one that tipped the scale. All group members were already familiar

with Eclipse and we are thus able to help each other if any problems arise

with either the version control back-end, or during compilation. Further,

if the knowledge shared among us turns out to be insufficient to solve a

particular problem, we can turn to the large community of Eclipse users and

developers. This is a good option to have, because the probability of getting

stuck with some problem for a long time is reduced. Furthermore, Eclipse

supports the Android SDK through a plug-in which facilitates the conversion

to Dalvik bytecode (Android Java VM) and the creation of binary packages

for Android.

For centralized version control, we chose SVN[9] because it is provided to

us by the university. SVN is also what we have used previously because it

facilitates sharing of code between several developers.

SQLite[10] will be used to store the data internally in the application. It

is widely used in Android development, and by using it we are adhering to

the non-functional requirement 4.6 (using existing Android building blocks).

We are designing primarily with a local database because the requirements

for sharing amongst users of the application is not of high priority.

2.6. RISK ANALYSIS 15

The application is written to run under Android on mobile phones and

larger hand-held devices such as tablets. This is a requirement from our

customer. The non-functional requirements can be found in the requirement

specification chapter (see section 3.4).

To communicate within our team, we decided to use Internet Relay Chat

(IRC), e-mail and 1 weekly group meeting. For meeting minutes, see ap-

pendix A. After trying IRC for a while, we found out that it was much easier

to create a group on Facebook[11]. A short discussion of this can be found in

the work process reflections section, 2.8. Communication with client is done

in the weekly meetings and by e-mail. Our supervisor will meet us every

other week and is also available on e-mail.

2.6 Risk Analysis

This risk list (Table 2.1) is a plan of actions to avoid risks and to minimize

their consequences if they should occur. We have chosen to display the risks

using a formula that states Likelihood * Impact = Severity. What this means

is that the estimated probability of an accident occurring multiplied with

the estimated loss of progress if the accident should occur, gives us an idea

of the importance to avoid a certain risk. The higher the severity, the more

important it becomes to prevent this accident and to know what adjustments

to make if we are unable to prevent it.

The scale of severity has an upper bound which is the smallest square of

an integer, the multitude of which will be enough to itemize all element in

the table by an integer. If there are 9 elements in the list, likelihood and

impact will be on a scale from 1 to 3. Where higher values have a higher

importance. If there are 10-16 elements, they will be on a scale between 1

and 4, and so on. This scale makes the severity of each risk relative to the

other risks.

The list also contains all the preventive actions we are taking and all

remedial actions we are prepared to take for every risk.

16 CHAPTER 2. PROJECT MANAGEMENT

Table 2.1: Risk assessment

Description Preventive action Remedial action

Likelihood ∗ Impact = Severity

Insufficient time

3 ∗ 3 = 9 Have an overview of the time

we have to our disposal.

Talk to each other and keep an

eye on the deadlines

Data loss

2 ∗ 3 = 6 Create daily archives from the

central SVN

Recover from archives.

Incompetence

2 ∗ 3 = 6 Plan and document implemen-

tation strategy before coding,

document failed implementa-

tion attempts

Help each other, try and find

alternative solutions

Illness

2 ∗ 2 = 4 Avoid infecting others, dress

well, keep good hygiene, get

enough sleep

Wait to recover, redistribute

work, work from home

Member(s) shirking work

2 ∗ 2 = 4 Deadlines within the group Talk to each other how we are

doing on our part and help

each other if we are stuck at

some point

Conflicts within group

1 ∗ 2 = 2 Have an open discussion. Do

not overrun others’ ideas

Solve the conflict or have a talk

with the supervisor

Group member drops out

1 ∗ 2 = 2 Motivate, be inclusive by as-

signing roles, perform social

activities

Notify supervisor. Reassign

member’s roles

Unforeseen delays

1 ∗ 2 = 2 Work more every week to keep

a safe-buffer

Distribute the work to unaf-

fected members

Server failure

1 ∗ 1 = 1 Run ‘svn update’ on the whole

repo every day

Install git[12]

2.7. WBS 17

2.7 WBS

In order to estimate the time we need to complete the project, a work break-

down structure[13] graph (see figure 2.1) has been used. The number to

the right of each label represents a percentage of the total time allocated to

the project. Each work package is estimated to consume no more than the

indicated percentage.

Figure 2.1: Work breakdown structure

2.8 Work process reflections

This chapter contains a description of the work process. It is intended that

this chapter will give a more detailed view of the project. For a summary of

the weekly process, see the status reports located in appendix B.

18 CHAPTER 2. PROJECT MANAGEMENT

In the start of the project the group had some problems with communica-

tion. Our initial attempt at setting up a convenient communication channel

for all members in the form of an IRC channel failed due to our different

habits. Assuming that all members were online at all times, proved to be a

mistake. While regular email got the messages across to all members, not

everyone found it to be very convenient. A solution that proved successful,

despite reluctance from some members was a Facebook group. We figured

that posting messages there would be optimal because most members visit

the site on a regular basis.

Partially due to the communication problems in the beginning, we also had

a difficult time producing the first prototype. We had not devoted enough

time to a discussion of what the application should be like, resulting in con-

fusion and conflicting views among members. To resolve this, we decided to

make a GUI flow chart together (see figure 4.2). This gave us a clearer un-

derstanding of what the application should be like and how we would fulfill

the various requirements. Another reason for the slow start was that most of

us had not worked with Android before. Things went more smoothly after

one of the members, who did have previous experience with Android, wrote

the start activity demonstrating the basic approach.

Oscar was at the hospital during the first three weeks of the project, and

had already fallen a bit behind when we delivered the preliminary version of

the report. As he had no previous experience with the Android programming

platform, more time than expected was used to learn this, and his direct

contribution to the group was limited as a result of this.

Still, the process was not optimal because the work load was unevenly

distributed. Several factors contributed to this, with the most important

being high time demands in other courses, illness amongst members and poor

planning of group activities. Our self organizing of the team was apparently

a bad choice. Despite the code that was available for studying in SVN,

not everyone was certain about how to write the application and certainly

everyone left the writing of the report to everyone else. The problem became

very evident in sprint 4, which was one week before the midterm report was

due. The active members’ attempts to motivate the rest of the group to work

with the report were not very successful during that week, resulting in a mid

term report that did not meet our supervisor’s expectations.

One week after the midterm delivery, Belen informed us by e-mail that she

was dropping the subject. She felt incapable of contributing in a satisfactory

manner, listing time constraints and lack of knowledge as reasons for this. See

2.8. WORK PROCESS REFLECTIONS 19

the status reports in appendix B for further information and consequences.

One problem leading up to this was that we did not distribute responsibilities.

This made it harder to figure out what each member was supposed to do

at a given time. Another problem was that we did not use a lot of time

to map out the members individual abilities and knowledge. This could

have been very useful for addressing and avoiding these problems before

they occurred. Another problem may be that the group did not discuss the

individual members expectation of the course in terms of workload and grade.

Having this information makes for more correct expectations of the effort of

other members, and could also have helped us identify potential problems

before they occurred.

After Belen left, Oscar realised that his contribution did not really out-

weigh hers at this time, and he asked the group if he should leave as well.

But during a meeting we had with the supervisor, it got explained to us that

it was possible to have a sit down with the teacher to discuss expectations for

this course, and try to come up with a solution. Even though Oscar wanted

to use this option, we strongly recommended him not to. As the trouble

around Belen leaving had made the group look disorganized enough. Oscar

have been ill for a big part of this semester, and it has greatly affected his

workload. Not only has he been away when hospitalized, but his physical

condition has been greatly reduced and he has technically been on sick leave

for 8 weeks during this semester. He has chosen to ignore this and still tried

to participate for most of these weeks. Documentation for Oscar’s sick leave

can be provided if necessary. Despite this setback, work on the project was

stable during the rest of sprint 5.

During sprint 6 work went on as normal. The meeting with the client on

21st of March was cancelled, and at the meeting with the supervisor on the

25th of March we got criticised for not reporting all hours. We had struggled

for some time to find a solution to how we could make the calendar view

work. This was finally solved, and the work on making this feature started.

Sprint 7 started at the 28th of March and would primarily be about work-

ing on the report as we had our last evaluation from the supervisor at the

9th of April. We had delivered an earlier version of the report to the client

and got some very helpful feedback on Monday the 4th of April. Thereafter

a lot of time was spent working on her suggested improvements before we

delivered the next version to the supervisor.

After this came the Easter holidays and even though we had not planned

for this to happen, everyone took a break from work in the period of the 11th

20 CHAPTER 2. PROJECT MANAGEMENT

to the 24th of April.

We once again lost some manpower during this period when Oscar had

to go back to the hospital for his second surgery. He scheduled his surgery

to happen in the Easter holidays so he would be unavailable for as short a

period as possible. Unfortunately, his surgery did not go as well as expected

and he needed yet another week for recovery. Even though he informed the

group about this right away, we lost valuable working hours in a crucial part

of the project. At the same time we lost contact with Jaroslav. He stopped

showing up at school and even though we continuously tried to contact him

via email, phone and Facebook we could not reach him. As per the final

delivery we have not yet been able to meet with him. Because we have not

gotten a hold of him, he has not been contributing in the last weeks of the

project, and the remaining group members had to take on additional work

to compensate for the loss of manpower. This was the chosen solution as

suggested by the risk assessment table (see section 2.6).

On the 11th of May we had a meeting with the supervisor regarding the

problems we have had within the group. We explained the current situation

and we all agreed that the most fair solution to our problem would be to ask

for separate grading. We do realise it might be a bit late in the semester to

report our troubles, but we still felt it was necessary to discuss this and ask

for guidance on the matter.

Working hours estimation To find out if our working estimates correlate

to the actual hours spent we plotted the hours spent and the hours estimated,

including the target workload per sprint in a chart (see figure 2.2). Starting

from sprint one, up to sprint four, we had sprints lasting one week. Starting

from sprint five, we increased the sprint length to two weeks per sprint. This

explains the major jump in hours after week four. A better illustration of

the actual deviation is shown in the deviation chart (see figure 2.3). This

chart shows the deviation in percentage. If the percentage is zero, we have

estimated correctly. If the percentage is above zero, we have underestimated

the workload, and vice versa, if the percentage is under zero, we have over-

estimated the workload. As seen in the charts, we have overestimated the

workload. The calculated average deviation is -16%, which means that we

have to adjust our future estimates accordingly.

2.8. WORK PROCESS REFLECTIONS 21

Figure 2.2: Sprint workload overview

Figure 2.3: Deviation

Project work package distribution At the end of the project, the back-

log is able to give a good indication of the how the group distributed working

hours between the different parts of the project. The estimation of the work-

load of each part in the project was done at the beginning of the project,

and is described in the WBS section of the report (see section 2.7). The two

22 CHAPTER 2. PROJECT MANAGEMENT

most important parts of the project are the Iterations(coding) and the report

parts, estimated to 56 percent and 36,5 percent respectively. Calculations

done on the backlog after the project was completed shows that the actual

work done on the parts match the estimates with only small deviations. The

group used 59,7 percent of the total hours on coding and maintenance, and

35,7 percent on the report. The group is pleased with the distribution of

work between the parts, and the low deviation also shows that we have made

a good initial estimate which we were able to follow throughout the project.

2.9 Work distribution

As mentioned in the work process reflections section 2.8 in this chapter,

we have not contributed equally to the project. Because of this, we have

included a table describing each person’s work distribution in percentage

(see table 2.9) based on the actual percentage we were supposed to work on

each part of the project, seen in the work breakdown structure (figure 2.1).

The top row in the table indicates the initials of the group members. C is

Christian Berg Skjetne, K is Kristian Greve Hagen, J.Ø. is John Arne Øye,

O is Oscar Aarseth, J.R. is Jaroslav Rakhmatoullin and B is Maria Belen

Gallego Garcia.

2.9. WORK DISTRIBUTION 23

Table 2.2: Work distribution percentage

C K J.Ø. O J.R. B

Total Percentage 29,9 29,7 16,9 6,0 16,5 1,1

Coding Percentage 45 15,8 15,4 7,1 1,0 5,8 0,0

Graphical design 6 0,5 3,0 2,0 0,0 0,5 0,0

PoI 3 0,5 0,3 0,0 0,0 2,3 0,0

Tour 2 0,3 0,1 0,1 0,0 1,5 0,0

Map 5 3,0 0,0 0,0 1,0 1,0 0,0

Calendar 3 3,0 0,0 0,0 0,0 0,0 0,0

PoI new/edit 5 0,0 3,0 2,0 0,0 0,0 0,0

Tour new/edit 4 0,0 3,0 1,0 0,0 0,0 0,0

Plan 7 3,0 3,0 1,0 0,0 0,0 0,0

Database 6 3,5 1,0 1,0 0,0 0,5 0,0

Sharing 4 2,0 2,0 0,0 0,0 0,0 0,0

Maintenance Percentage 6 0,5 0,5 2,5 1,5 1,0 0,0

Testing Percentage 5 2,0 2,0 1,0 0,0 0,0 0,0

Research Percentage 1,5 0,0 0,0 0,5 0,0 1,0 0,0

Chapters Percentage 35 9,9 10,1 4,5 2,6 7,4 0,5

Introduction 2 0,0 0,0 0,5 0,5 0,5 0,5

Project Management 5 1,0 1,0 1,0 0,5 1,5 0,0

Requirements spec. 6 0,5 2,0 1,0 0,5 2,0 0,0

Sytem Architecture 5,5 4,5 1,0 0,0 0,0 0,0 0,0

Implementation 4 1,0 2,0 0,0 0,0 1,0 0,0

Testing 3 1,0 2,0 0,0 0,0 0,0 0,0

Follow-Up Work 1 0,9 0,1 0,0 0,0 0,0 0,0

Appendices 7 1,0 1,0 2,0 1,1 1,9 0,0

Glossary 1 0,0 1,0 0,0 0,0 0,0 0,0

References 0,5 0,0 0,0 0,0 0,0 0,5 0,0

Meetings Percentage 7,5 1,7 1,7 1,3 0,9 1,3 0,6

Supervisor 1,5 0,3 0,3 0,3 0,2 0,3 0,1

Client 3 0,7 0,7 0,5 0,3 0,5 0,3

Group 3 0,7 0,7 0,5 0,4 0,5 0,2

24 CHAPTER 2. PROJECT MANAGEMENT

Chapter 3

Requirements specification

This chapter contains the client’s description of the application. The func-

tional requirements describe the various activities a user can expect to per-

form with the application. Whereas the non-functional requirements define

aspects of the application, such as the supported operating system, devices,

and design guidelines. We have changed the requirements slightly according

to advice from our supervisor in order to eliminate some ambiguity. How-

ever, no changes were done without the client’s consent and the lists in this

chapter remain close to the original ones. A listing of the modifications done

on the requirements can be found in the requirements history section (3.5)

at the end of this chapter.

We have chosen not to modify them significantly, because it makes the

acceptance tests easier to conduct and because it makes the reporting of the

progress to the client more precise. That is, when we reported to the client

which functionality has been implemented, we used these requirements.

3.1 Functional requirements

Table 3.1 lists “basis city exploration” requirements. They describe the

most important functionality according to the client and have the highest

priority in the implementation phase. The terms fixed and free tour serve

to distinguish between how a tour may be displayed. Fixed tours may be

displayed in a calendar view (scheduled) and on a map with a suggested

navigation path from one PoI to the next. Free tours are displayed in a map

with a path through all PoIs, and without a schedule.

25

26 CHAPTER 3. REQUIREMENTS SPECIFICATION

Table 3.1: Basis requirements

Identifier Requirement Priority

The City Explorer shall provide support for...

S1.1 displaying information about PoIs H

S1.2 showing PoIs in a list view H

S1.21 showing PoIs in a map view H

S1.3 easily switching between a PoIs list view and map view H

S1.4 filtering PoIs according to categories (e.g. museum, landmark) M

S1.5 navigation to a PoI from an arbitrary location (including other PoIs) H

S1.6 showing a fixed tour in a calendar view H

S1.61 showing a fixed tour in a map view H

S1.7 showing a free tour in a list view L

S1.71 showing a free tour in a map view L

S1.8 going trough a tour H

Table 3.2 lists the “tailoring” requirements of the application. They de-

scribe the various planning activities a user may perform and how they can

modify the data. This table has medium to high priority and it is important

that we fulfill these requirements as well.

Table 3.2: Tailoring requirements

Identifier Requirement Priority

The City Explorer shall provide support for...

S2.1 marking certain PoIs as favourite H

S2.2 adding categories to user created PoIs M

S2.3 creating a new PoI from scratch M

S2.4 creating a new Poi from an existing PoI M

S2.6 creating a fixed tour from an existing tour H

S2.61 creating a fixed tour from scratch H

S2.7 creating a free tour from an existing tour L

S2.71 creating a free tour from scratch L

Table 3.3 represents the “sharing capabilities” of the application. They

describe the Internet enabled functionality such as browsing and download-

ing PoIs and tours stored on a server and sharing PoIs and tours between

3.2. USE CASE DIAGRAMS 27

users. This functionality is of least importance to the client and should be

implemented when the basis and tailoring requirements have been satisfied.

In agreement with the customer, we have removed the requirement to share

tours for technical reasons. For a further discussion on this, see the follow-up

work chapter, section 7.3, “Sharing of Tours”.

Table 3.3: Sharing requirements

Identifier Requirement Priority

The City Explorer should provide support for...

S3.1 browsing PoIs stored on a server M

S3.2 downloading PoIs stored on a server M

S3.3 sharing PoIs beteween users M

S3.4 browsing tours stored on a server M

S3.5 downloading tours stored on a server M

3.2 Use case diagrams

The use cases[14] explain how an end user might proceed to exploit the

functional requirements. We use regular use cases for the three main aspects

of the application.

28 CHAPTER 3. REQUIREMENTS SPECIFICATION

3.2.1 Basis city exploration

Figure 3.1 displays an overview of the “Basis city exploration” use cases,

they are described more detailed in tables 3.4 through 3.12.

Figure 3.1: Use Cases for requirements S1.1 — S1.8

3.2. USE CASE DIAGRAMS 29

3.2.2 Tailoring

Figure 3.2 is an overview of the use cases which define the “Tailoring” part

of the application. See tables 3.13 through 3.18 for a closer description.

Figure 3.2: Use Cases for requirements S2.1 — S2.71

30 CHAPTER 3. REQUIREMENTS SPECIFICATION

3.2.3 Sharing

Figure 3.3 presents an overview of the use cases associated with the “Shar-

ing” aspects of the application. See tables 3.19 through 3.21 for a closer

description of these use cases.

Figure 3.3: Use Cases for requirements S3.1 — S3.5

3.3 Textual Use Cases

Here is the textual use cases shown, which describe each use case more

detailed.

Table 3.4: City Explorer use case 1

Use Case #1: covers S{1.2, 1.3} 2011-05-04

Name List all downloaded PoIs
Summary The user must be able to browse places that have been

previously downloaded
Actor User

Precond. The local database holds at least one PoI
Postcon. Activity 2: Plan with a grouped list of all PoIs is visible.

Each group is denoted by the category of the PoIs within
it.

Basic flow 1. The user clicks [plan] in Activity 1: Start
2. The user clicks [tab:Locations]

3.3. TEXTUAL USE CASES 31

Table 3.5: City Explorer use case 2

Use Case #2: covers S1.1 2011-05-04

Name Display the description of a single PoI
Summary Information such as an address, a picture, a description, the

openening hours, a website and a telephone number that is
recorded about a particular place is made visible

Actor User
Precond. The local database holds at least one PoI, Activity 2: Plan

is active
Postcon. The user is informed about name, description, category and

address of a PoI, Activity 4: Tour view is active

Basic flow 1. Click [tab: Locations]

2. Click an item in the list

Table 3.6: City Explorer use case 3

Use Case #3: covers S{1.21, 1.3} 2011-05-04

Name Show the geographical location of a single PoI on
a digital map

Summary The map activity must be able to show where a particular
place is, in order to let users orient themselves and decide
on whether they wish to visit the place.

Actor User
Precond. Internet connection is established, database holds at least

one PoI, [tab: Locations] in Activity 2: Plan is activated
Postcon. The map activity displays a category-icon which indicates

where a particular place is.

Basic flow 1. The user selects a PoI by long-clicking the corresponding
item in the list
2. A list of quick actions appears
3. The user clicks [qa:show in map]

4. Activity 8: Directions is activated with the map centered
on the coordinates of the selected Poi

32 CHAPTER 3. REQUIREMENTS SPECIFICATION

Table 3.7: City Explorer use case 4

Use Case #4: covers S1.4 2011-05-04

Name Filter listed PoIs by category
Summary Enables the user to filter pois by category

Actor User
Precond. [tab: Locations] in Activity 2: Plan is activated
Postcon. The list of all PoIs contains only those places which meet

the selected categories

Basic flow 1. The user presses the [menu] button on the device
2. A dialog with check boxes for categories appears
3. User checks the desired categories and clicks [OK]

Table 3.8: City Explorer use case 5

Use Case #5: covers S1.5 2011-05-04

Name Display directions to a PoI in a digital map
Summary Launches Activity 9: Calendar View where the source and

destination between which the user wishes to navigate can
be selected before invoking Google Maps or other applica-
tion capable of giving directions

Actor User
Precond. Either Activity 8: Directions or [tab:Locations] in Activ-

ity 2: Plan is active
Postcon. A third party application with navigation support has been

launched and is showing the directions

Basic flow 1. Long click the desired PoI
2. Click [qa:get directions] in quick action popup
3. Activity 9: Calendar View is activated
4. Select ”navigate from current position”
5. The user clicks [Navigate]

6. Select the preferred navigation-application.
7. The directions are drawn on the display.

Alternative
flow 4a

4a1. Select ”navigate from another location”.
4a2. Select location from the list of PoIs.
4a3. The user clicks [Navigate]

4a4. Select the preferred navigation-applicatio
.
4a5. The directions are drawn on the display.

3.3. TEXTUAL USE CASES 33

Table 3.9: City Explorer use case 6

Use Case #6: covers S1.6 2011-04-28

Name View a fixed tour
Summary Displays a tour in a time-table

Actor User
Precond. The database holds at least one fixed tour containing at

least one PoI, [tab:Tours] in Activity 2: Plan is activated
Postcon. The tour is shown in a time-table

Basic flow 1. Click on a fixed tour.

Table 3.10: City Explorer use case 7

Use Case #7: covers S{1.61, 1.71} 2011-05-04

Name Display a tour in a digital map
Summary A user will want to see all PoIs that are associated with a

tour in the map.
Actor User

Precond. The database holds at least one tour containing at least one
PoI. Either of Activity 3: PoI details or [tab: Tours] in
Activity 2: Plan is active.

Postcon. Activity 8: Directions displays all PoIs of a tour in the map.

Basic flow 1. Press the button [menu] on the device
2. Click [menu:show on map]

3. Activity 8: Directions is activated and displays a cate-
gory icon on the coordiantes of every PoI in the tour.

Table 3.11: City Explorer use case 8

Use Case #8: covers S1.7 2011-05-04

Name List all PoIs in a free tour
Summary The user must be able to see all PoIs of a free tour in a list

Actor User
Precond. The database holds at least one free tour containing at least

one PoI, [tab:Tours] in Activity 2: Plan is activated
Postcon. All PoIs associated with a free tour are itemized in the

simple list of Activity 3: PoI details

Basic flow 1. Click on a free tour

34 CHAPTER 3. REQUIREMENTS SPECIFICATION

Table 3.12: City Explorer use case 9

Use Case #9: covers S1.8 2011-05-04

Name Cycle through all PoIs in a tour
Summary The user must be able to view all PoIs in a tour one by one,

and switching easily between them
Actor User

Precond. Activity 4: Tour view or Activity 8: Directions has been
activated from Activity 3: PoI details or [tab: Tours] in
Activity 2: Plan by selecting a single PoI

Postcon. Two or more PoIs in a tour have been displayed in the order
they are stored in the tour.

Basic flow 1. Cycle through the tour by clicking [< −] or [− >].

Table 3.13: City Explorer use case 10

Use Case #10: covers S2.7 2011-05-10

Name Create a new tour from an existing tour
Summary The user may create a new free tour from an existing tour

Actor User
Precond. [tab:Tours] in Activity 2: Plan is activated
Postcon. A new free tour with the PoIs of an existing tour is created

Basic flow 1. Press the button [menu] on the device
2. Click [menu:New Tour]

3. Fill in the mandatory fields and choose free tour
5. Click [Choose Tour] and choose the tour you want to
copy PoIs from
6. Click [Save Tour]

Table 3.14: City Explorer use case 11

Use Case #11: covers S{2.61, 2.71} 2011-05-10

Name Create a new tour
Summary A user may create a new tour

Actor User
Precond. [tab:Tours] in Activity 2: Plan is activated
Postcon. Newly created tour is stored in the database

Basic flow 1. Press the button [menu] on the device
2. Click [menu:New Tour]

3. Fill in the mandatory fields, and choose whether you
want a fixed or a free tour
4. Click [Save tour]

3.3. TEXTUAL USE CASES 35

Table 3.15: City Explorer use case 12

Use Case #12: covers S2.1 2011-05-10

Name Setting a PoI as a favourite
Summary The user may change a PoIs favourite status

Actor User
Precond. Activity 4: Tour view is active and displays the selected

PoI
Postcon. The selected PoI has changed favourite status

Basic flow 1. Press the button [menu] on the device
2. Click [menu:Favourite] marked as a star

Table 3.16: City Explorer use case 13

Use Case #13: covers S{2.2, 2.3} 2011-05-10

Name Create a new PoI
Summary The user may create new PoIs

Actor User
Precond. [tab: Locations] in Activity 2: Plan is activated
Postcon. The database contains the newly created PoI

Basic flow 1. Press the button [menu] on the device
2. Click [menu:New Location]

3. Fill in the mandatory fields
4. Click [Save Location]

36 CHAPTER 3. REQUIREMENTS SPECIFICATION

Table 3.17: City Explorer use case 14

Use Case #14: covers S2.6 2011-05-10

Name Create a fixed tour from an existing tour
Summary The user may create a fixed tour from an existing tour

Actor User
Precond. [tab:Tours] in Activity 2: Plan is activated
Postcon. The tour is displayed in [tab:Tours] in Activity 2: Plan

Basic flow 1. Press the button [menu] on the device
2. Click [menu:New Tour]

3. Fill in the mandatory fields, and choose fixed tour
4. Click [Choose tour]

5. Choose the tour you want to create a new from
6. Press the [Save tour]

7. Click on the newly created tour
8. Press the button [menu] on the device
9. Click [menu:Time Table for Tour]

10. Drag your finger to select times and PoIs.
11. Press the button [menu] on the device
12. Click [menu:Save Times]

Table 3.18: City Explorer use case 15

Use Case #15: covers S2.4 2011-05-10

Name Create a new PoI from an existing PoI
Summary The user may create new PoIs from existing PoIs

Actor User
Precond. [tab: Locations] in Activity 2: Plan is activated
Postcon. The database contains the newly created PoI

Basic flow 1. Press the button [menu] on the device
2. Click [menu:New Location]

3. Press the [Choose Location]

4. Select the PoI you want to create a new from
5. Edit the wanted fields
6. Click [Save Location]

3.3. TEXTUAL USE CASES 37

Table 3.19: City Explorer use case 16

Use Case #16: covers S{3.1, 3.2} 2011-05-10

Name Browsing and downloading PoIs stored on a
server

Summary The user can browse and download PoIs stored on a server
Actor User

Precond. Activity 2: Plan is activated and [tab: Locations] is se-
lected

Postcon. The user has browsed and downloaded wanted PoIs from a
server

Basic flow 1. Press the button [menu] on the device
2. Click [menu:Update Locations]

3. Choose the PoIs you want to download to your device
4. Press the button [menu] on the device
5. Click [menu:Update Locations]

Table 3.20: City Explorer use case 17

Use Case #17: covers S3.3 2011-05-10

Name Sharing Pois between devices
Summary The user can share PoIs with another user

Actor User
Precond. Activity 2: Plan is activated and [tab: Locations] is se-

lected
Postcon. A user has sent one or more PoIs to another user

Basic flow 1. Press the button [menu] on the device
2. Click [menu:Share]

3. Choose the PoIs you want to share
4. Press the button [menu] on the device
5. Click [menu:Share]

6. Select the wanted sharing method and follow the on-
screen directions
7. When the other user has received the file that was sent,
open it using City Explorer by clicking on the file and choos-
ing City Explorer

38 CHAPTER 3. REQUIREMENTS SPECIFICATION

Table 3.21: City Explorer use case 18

Use Case #18: covers S{3.4, 3.5} 2011-05-10

Name Browsing and downloading tours stored on a
server

Summary The user can browse and download tours stored on a server
Actor User

Precond. Activity 2: Plan is activated and [tab: Tours] is selected
Postcon. The user has browsed and downloaded wanted tours from

a server

Basic flow 1. Press the button [menu] on the device
2. Click [menu:Update Tours]

3. Choose the ss you want to download to your device
4. Press the button [menu] on the device
5. Click [menu:Update Tours]

3.4. NON-FUNCTIONAL REQUIREMENTS 39

3.4 Non-functional requirements

Table 3.22 describes the nonfunctional requirements of the application.

These requirements impose certain constrains upon the architecture and im-

plementation. Some of the requirements are neither visible to the end user,

nor are they easily verifiable with tests. Instead, they need to be thought

through carefully to ensure that the application meets them.

Requirement number S4.1 (implemented on Android) is not particularly

difficult to verify because the code either compiles against the Android Level 8

API or it does not. The client did not specify a particular reason for choosing

this version of the OS. However, a significant portion (roughly 60%) of active

devices on the android market in the first quarter of 2011 were running version

2.2 [15]. We also know that Android was preferred because of support for

flexible software composition and the open source Apache 2.0 license (page

2, [2]).

Our client has provided two development devices running Android 2.2 that

are at our disposal at all times. The two devices are the Google Nexus One

and the Samsung Galaxy Tab. The application is developed on both devices

and tests are performed on both to ensure that we meet S4.2 (tested on both

moblie and tablet Android platforms).

We have met requirement S4.3 (follow Android recommendations for ap-

plication interface) by adhering to the recommendations mentioned in the

Google I/O Video ”UI Patterns” [16]. For more details, see the implementa-

tion chapter, section 5.2.1.

Perhaps the most difficult non-functional requirement to fulfill is S4.4

(offline functionality). During the planning phase and early in the project we

have discussed how we might implement map functionality without an active

Internet connection using Openstreetmap.org. Those plans were abandoned

due to the complexity of such a solution and the limited amount of time at

our disposal. Nevertheless, our application does function offline, but maps

and navigation are not available in this specific mode, including browsing

and downloading of PoIs and tours stored on a server and other functions

that clearly needs an Internet connection to fully function.

To meet requirement S4.5, the application should be able to integrate with

the composition tool developed by UbiCompForAll.

We have met S4.6 (reusing existing android building blocks) by including

no external libraries in our application except Google API version 8. We

have used the integrated Google Maps for displaying our maps, and added

40 CHAPTER 3. REQUIREMENTS SPECIFICATION

the opportunity to open an URL in the default browser.

In agreement with the customer, we have decided to remove the require-

ment that accommodates new types of PoI entities(Plug-in). For a further

discussion on this, see the follow-up work chapter, plug-in system (section

7.6).

Table 3.22: Non-functional requirements

Identifier Requirement Priority

The City Explorer client. . .

S4.1 shall be implemented on the Android platform (TBD Android version 2.2) H

S4.2 will be tested both on the Android mobile and tablet platforms provided by

the customer

H

S4.3 should follow Android recommendations for application interface M

S4.4 should provide partial functionality when no Internet access is available H

S4.5 should be extendible to accommodate composition support H

S4.6 should use existing Android building blocks when possible (e.g. browser and

navigation support)

H

3.5 Requirements History

Modifications

Here we will list and explain all edits done on the requirements during the

course of the project. By discussing the requirements among ourselves and

with our client, alot of changes have been proposed while developing the

application.

The following requirements were split into two. This was done because

they explained two different aspects of the application in one requirement.

Therefore, referencing to one of these requirements then got more specific

after they were split.

- requirement S1.2 was split into S1.2 and S1.21

- requirement S1.6 was split into S1.6 and S1.61

- requirement S1.7 was split into S1.7 and S1.71

- requirement S2.6 was split into S2.6 and S2.61

- requirement S2.7 was split into S2.7 and S2.71

3.5. REQUIREMENTS HISTORY 41

The following requirements were dropped because detailed discussion over

the requirements proved that they were already covered through earlier re-

quirements.

- requirement S2.2, “Showing favourite PoIs in a list view or in a map

view”, was dropped because it was already covered in S1.2.

- requirement S2.3‘, “Easily switching between a favourite PoIs list view

and map view”, was dropped because it was covered in S1.3.

- requirement S2.4, “Filtering favourite PoIs according to categories” was

dropped because it was covered in S1.4.

- requirement S2.5, “Navigation to a favourite PoI from the current lo-

cation or any other place”, was dropped because it was covered in S1.5.

- requirement S2.8, “Showing a fixed trip created by the user in a cal-

endar or in a map” was dropped because it was covered in S1.6 and

S1.61.

- requirement S2.9, “Showing a free trip created by the user in a calendar

or in a map” was dropped because it was covered in S1.7 and S1.71.

- requirement S2.10, “Going through a trip created by the user”, was

dropped because it was covered in S1.8.

Additional changes were also made:

- “Adding categories to user created PoIs” was added at S2.2.

- requirement S2.11 was moved to S2.3.

- requirement S2.12 was moved to S2.4.

The non-functional requirement S4.5, “Should be extendible to accom-

modate composition support”, has not been fulfilled. This is because the

UbiCompForAll composition tool and back end system does not yet exist.

This makes it hard to implement the application with composition support.

Completion

This section contains a history of our progress on completing the require-

ment specification list. The orange colour means that we have started imple-

menting the requirement. The yellow colour means that the requirement has

been partially implemented. The green colour means that the requirement

has been fully implemented. The dates in the tables specifies at which date

the requirements was started, partially implemented and fully implemented,

respectively. Since the requirement specification list was updated each week,

42 CHAPTER 3. REQUIREMENTS SPECIFICATION

some of the requirements were fully implemented during this period. This

explains why some status cells does not have a date. As in the functional re-

quirements section (See section 3.1), table 3.23 lists the history for the “Basis

city exploration” requirements, table 3.24 lists the history for the “Tailoring”

requirements and table 3.25 lists the history for the “Sharing” requirements.

3.5. REQUIREMENTS HISTORY 43

Table 3.23: Basis requirements

Identifier Requirement Status

The City Explorer shall provide support for...

S1.1 displaying information about PoIs
01. Mar 2011

07. Mar 2011

S1.2 showing PoIs in a list view

01. Mar 2011

07. Mar 2011

S1.21 showing PoIs in a map view

01. Mar 2011

07. Mar 2011

S1.3 easily switching between a PoIs list view and map view

01. Mar 2011

S1.4
filtering PoIs according to categories (e.g. museum,

landmark)
01. Mar 2011

07. Mar 2011

S1.5
navigation to a PoI from an arbitrary location (including

other PoIs)
07. Mar 2011

28. Mar 2011

S1.6 showing a fixed tour in a calendar view

01. Mar 2011

09. May 2011

S1.61 showing a fixed tour in a map view

01. Mar 2011

S1.7 showing a free tour in a list view

01. Mar 2011

28. Mar 2011

04. Apr 2011

S1.71 showing a free tour in a map view

01. Mar 2011

28. Mar 2011

04. Apr 2011

S1.8 going trough a tour

28. Mar 2011

44 CHAPTER 3. REQUIREMENTS SPECIFICATION

Table 3.24: Tailoring requirements

Identifier Requirement Status

The City Explorer shall provide support for...

S2.1 marking certain PoIs as favourite

01. Mar 2011

07. Mar 2011

S2.2 adding categories to user created PoIs

07. Mar 2011

02. May 2011

S2.3 creating a new PoI from scratch

07. Mar 2011

02. May 2011

S2.4 creating a new Poi from an existing PoI

07. Mar 2011

02. May 2011

S2.6 creating a fixed tour from an existing tour 28. Mar 2011

09. May 2011

S2.61 creating a fixed tour from scratch 28. Mar 2011

02. May 2011

S2.7 creating a free tour from an existing tour 28. Mar 2011

02. May 2011

S2.71 creating a free tour from scratch 28. Mar 2011

02. May 2011

3.5. REQUIREMENTS HISTORY 45

Table 3.25: Sharing requirements

Identifier Requirement Status

The City Explorer should provide support for...

S3.1 browsing PoIs stored on a server

09. May 2011

S3.2 downloading PoIs stored on a server

09. May 2011

S3.3 sharing PoIs beteween users

09. May 2011

S3.4 browsing tours stored on a server

09. May 2011

S3.5 downloading tours stored on a server

09. May 2011

46 CHAPTER 3. REQUIREMENTS SPECIFICATION

Chapter 4

System Architecture

Decisions regarding the design and implementation of the application are

discussed in this chapter.

4.1 Overall Architecture

Figure 4.1: Overall system architecture

Figure 4.1 shows the overall architecture of the system. The main part of

the system is divided in to a back-end server and a client. Only the client

47

48 CHAPTER 4. SYSTEM ARCHITECTURE

is part of this project. The server is going to be created at a later time.

Since the client software does not have a back-end server to test against, a

simple server has been created for testing purposes. The server is described

in this report for consistency, but it is not part of the specification. The idea

is to have a central server hosting PoIs and tours. The PoIs can be added

by different institutions or individuals (for example tourist office, school,

museum). The client part of the system is able to download this information

from the server and display it to the user. The system also supports sharing

and creating of information by users of the client.

4.2 Architecture design

The user interface is separated in to the screens shown in the figure 4.2.

The figure also shows the navigation flow in the GUI. The GUI is further

discussed in section 5.2.1.

4.2. ARCHITECTURE DESIGN 49

Figure 4.2: User interface navigation flow chart

50 CHAPTER 4. SYSTEM ARCHITECTURE

4.2.1 Architecture classes

The class diagram [14] in figure 4.3 shows a high level description of the

class structure of the program. The data package reflects the content of the

database (see section 4.2.2). The gui package reflects the components of the

GUI (see 5.2.1). The map package contains the classes necessary to show a

map with different overlays. This is a high level representation and is only

intended to give a simple overview of the relation between the classes in the

program.

Figure 4.3: High level class diagram

4.2.2 Architecture database

The ER-diagram [17] in figure 4.4 shows an overview of the database structure

used in the program. Since the database back end system is not part of the

specification, this information is mainly given to help the reader understand

4.2. ARCHITECTURE DESIGN 51

the relation between the different data objects used in the program. An

online database and a local database is required to allow full functionality

when the phone is both connected and disconnected to the Internet. The

two databases is similar in design, but the implementation may be different.

This will be further discussed in section 5.2.5

The diagram shows the tables and fields of the database, as well as the

connections between them. The poi table shows us the fields that a particular

poi should have. This is similar with the tour table. The trip poi table

connects the poi and tour tables in a many-to-many connection. This means

that a PoI can be included in many tours, and a tour can include many PoIs.

The address table is a helper-table that contains an address for a PoI. The

category table is a simple table that holds all the categories, and a PoI can

be assigned to one category.

Figure 4.4: ER-diagram

52 CHAPTER 4. SYSTEM ARCHITECTURE

4.2.3 Architecture sequence diagrams

The sequence diagram [14] shown in figure 4.5 shows an example of a GUI

element changing the favorite status of a PoI. After the update has been sent,

the component updates the list of PoIs.

Figure 4.5: Sequence diagram: favorizing a PoI

Figure 4.6 show the similarities between changing favorites status of a PoI

and creating a new PoI. All other functions that calls the database will be

very similar to these two sequence diagrams, so we have only included those

to illustrate how the program classes communicate with the database.

4.2. ARCHITECTURE DESIGN 53

Figure 4.6: Sequence diagram: creating a PoI

The sequence diagram [14] in figure 4.7 show the process of updating the

device’s local storage with information contained on a webserver. When the

user request his list to be updated, a message is sent to the server, which is

sent back, and parsed, before being sent back as a list of PoIs.

54 CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.7: Sequence diagram: updating PoI List

Viewing figure 4.8, one can see the sequence of classes called when the

user prompts to share one or more of his PoIs with another android device

through a Bluetooth [18] connection. The PoIs are sent as object between

the classes in teh City Explorer, but are parsed in a connector class and sent

as text files over the connection between the devices.

4.2. ARCHITECTURE DESIGN 55

Figure 4.8: Sequence diagram: sharing a PoI

56 CHAPTER 4. SYSTEM ARCHITECTURE

Chapter 5

Implementation

Since this project mostly involves user interface development, the archi-

tecture is simple. Also, since the platform running the system is Android,

many of the design practices is forced by the platform design.

We have chosen the software implementation based on the recommended

practices for Android. Some of the effects of this is a flat layered design,

with minimal communication between the different screens in the program.

The reason that the Android system uses this approach has to do with the

way the Android operating system handles multitasking. In short, the effect

is that no persistence should exist between the screens because they can be

destroyed and garbage collected at a time chosen by the operating system,

i.e. if it is not an active activity. This has the effect that we can not have a

core class tying the entire user interface together.

Figure 5.1: Communication between activities

57

58 CHAPTER 5. IMPLEMENTATION

The passing of data between the screens is done by making the objects

that we wish to send parcelable to a set of primitive types. When the sender

initiates the handover, it first packages the object and sends it via an intent.

When the receiving screen (or Activity, as they are called in Android) starts

up, it can retrieve the package from the intent that started it, and unpack

the package to build a new, identical object. (See figure 5.1)

5.1 Packages

project.CityExplorer.gui

This package holds the Activities for the project (see figure 4.2) and helper

classes for creating lists and other gui components.

project.CityExplorer.data

This package holds the classes for mirroring database content in memory.

(For example PoI, tour, address) it also holds the database interface and the

database connectors.

project.CityExplorer.map

This package holds the classes needed to show the information on a map.

project.CityExplorer.map.route

This package holds the classes for showing a route on a map.

5.2 Implementation design

Figure 4.2 shows all of the different Activities of the application. Here is

a short description of each activity:

• Activity 1 is the starting screen. This is the first thing a user sees

after opening the application. The screen has two buttons ”Plan” and

”Explore”. The plan button launches activity 2. The explore button

launches activity 7, showing a map with the users current position and

nearby POIs.

• Activity 2 is a tab view, showing either PoIs or tours. The PoIs are

listed by categories, always showing the favourites first. The tours are

listed in categories ”‘empty”’, ”‘fixed”’ and ”‘free”’.

5.2. IMPLEMENTATION DESIGN 59

• Activity 3 opens when a PoI is selected. The activity shows a detailed

view with all of the information about the PoI.

• Activity 4 opens when a tour is selected. The activity shows a view of

all of the PoIs in a tour.

• Activity 5 allows creating a PoI.

• Activity 6 allows creating a tour.

• Activity 7 shows a map. The activity can be used to show a map with

either a tour or PoI.

• Activity 8 opens the directions activity, allowing you to get directions

from one PoI to another.

• Activity 9 opens the calendar view, allowing you to see or change times

for your fixed tour.

5.2.1 User interface

The GUI is divided in nine main Activity elements. They are the center-

pieces of the application because all functionality is exposed through them.

While designing and implementing the GUI, we have followed some of the

recommendations mentioned in the Google I/O video [16]. We found ele-

ments (such as “Quick Actions”) especially useful and they are described

more closely later in this sub chapter.

5.2.2 Quick Actions

Parallel functionality to a “context popup” which appears whenever a user

right-clicks on an object in a GUI of a regular computer application is offered

through a list of quick actions. A quick action can be shown after long-

clicking an object in the interface. There is no clear way of knowing whether

an object will produce a list of quick actions short of trying to long-click it.

However, items in the lists of Activity 2 as well as PoI icons in the map, will

have quick actions.

A list of quick actions may be longer than the width of the display. The

user can scroll the list horizontally in those cases by holding one finger on

the list and dragging it to the left.

60 CHAPTER 5. IMPLEMENTATION

5.2.3 Activities

An overview of the elements discussed in this section, is available in figure

4.2. Following each Activity, there are listings of items associated with it

such as visible buttons, quick actions, source file classes and menu buttons.

Buttons referred to in the use case section (3.2) are defined in those lists.

Activity 1: Start

This is the first visible activity after launching City Explorer. Button [plan]

launches the tab view showing either PoIs or tours (Activity 2). Button

[explore] launches the map (Activity 7) showing the current position of the

device and nearby PoIs.

Involved classes: Buttons:

StartActivity.java [plan] —> Activity 2: Plan

[explore] —> Activity 7: Map

Activity 2: Plan

Plan consists of two tabs named “Locations” and “Tours”, which list all

currently downloaded PoIs and tours, respectively. The list of PoIs is divided

into several sections, where each one is presented with a header line that is

the name of the category to which the PoIs in the section are assigned. That

is, PoIs are grouped in sections labeled by the primary category of the PoIs

within. The list of tours is also divided into sections, ”‘empty”’, ”‘fixed”’

and ”‘free”’. The tours are placed under each section according to what kind

of tour it is.

Involved classes: Buttons:

PlanActivity.java [Locations] —> PoIs listing

PlanTabActivity.java [Tours] —> tours listing

PlanTabPoi.java [item:pois list] —> Activity 3: Poi Details

PlanTabTrip.java [item:tours list] —> Activity 4: Tour view

SeparatedListAdapter.java

Section.java

PoiAdapter.java

Poi.java

TripAdapter.java

Trip.java

5.2. IMPLEMENTATION DESIGN 61

Quick Actions:

tours tab

[qa:Add Locations] —> Locations in Activity 2: Plan

[qa:Show on Map] —> Activity 7: Map

[qa:Delete] Delete selected tour

Locations tab

[qa:star] Toggle favourite status of PoI

[qa:add to tour] —> Tours in Activity 2: Plan

[qa:show on map] —> Activity 7: Map

[qa:get directions] —> Activity 8: Directions

[qa:share] Share a PoI with another person

[qa:delete] Delete selected PoI

Menu buttons in Locations tab:

[menu:New Location] —> Activity 5: Create PoI

[menu:share] —> Locations in Activity 2: Plan

[menu:filter] —> Filter PoIs according to categories

[menu:update locations] —> Locations in Activity 2: Plan

Menu buttons in Tours tab:

[menu:New Tour] —> Activity 6: Create tour

[menu:Update tours] —> Tours in Activit 2: Plan

Activity 3: PoI details

PoI details displays information about a selected PoI. A user can activate

this Activity in at least three ways:

1. by clicking an item in the list of the tab “Locations” in Activity 2

2. by clicking an item in the list of Activity 4: Tour view

3. by clicking a PoI in Activity 7: Map view

The buttons [< −] and [− >] appear only when the user navigates to this

activity from Activity 4: Tour view.

Involved classes: Buttons:

PoiDetailsActivity.java [< −] show previous PoI

Poi.java [− >] show next PoI

62 CHAPTER 5. IMPLEMENTATION

Menu buttons:

[menu:Show on Map] —> Activity 7: Map

[menu:Get directions] —> Activity 8: Directions

[menu:star] Toggle favourite status of PoI

Activity 4: Tour view

Activity 4 opens when a tour is selected. The activity shows all of the PoIs

in a tour in a list view.

Involved classes: Buttons:

TripList.java [item:pois list] —> Activity 3: Poi

Details

Trip.java

Quick Actions:

[qa:Delete from tour] —> Delete PoI from the current tour

[qa:Show on Map] —> Activity 7: Map

[qa:Get Directions] —> Activity 8: Get directions

Menu buttons:

[menu:Add location] —> Locations tab in Activity 2: Plan

[menu:Show on Map] —> Activity 7: Map

[menu:Delete] —> Delete the current tour

[menu:Time Table for Tour] —> Activity 9: Calendar view

Activity 5: create PoI

Activity 5 allows you to create a new PoI.

Involved classes: Buttons:

NewPoiActivity.java [category drop down] Choose cate-

gory

Poi.java [search] Opens the browser and

searching for images with your given

name with Google Images

[Choose Location] —> Locations in

Activity 2: Plan

[Save Location] Save the PoI in the

database

5.2. IMPLEMENTATION DESIGN 63

Menu buttons:

[menu:Save Location] Save the PoI in the database

Activity 6: Create Tour

In activity 11, the user can make a new tour. The user can set the name

and whether or not it will be a fixed or a free tour. It will start by being an

empty tour, so you can add PoIs later on, or you can choose to derive the

PoIs from an existing tour.

Involved classes: Buttons:

NewTripActivity.java [Choose Tour] —> Tours in Activity

2: Plan

Trip.java [Save Tour] Save the tour in the

database

Menu buttons:

[menu:Save Tour] Save the tour in the database

Activity 7: Map view

Activity 7 shows a map. The activity can be used to show either a PoI or a

tour in a map, using Google Maps. The buttons [< −] and [− >] appear

only when the user navigates to this activity from Activity 4: Tour view.

Involved classes: Buttons:

MapsActivity.java [< −] show previous PoI

MapIconOverlay.java [− >] show next PoI

MapTripOverlay.java [A PoI] opens up the Quick Action for

the selected PoI.

PoiToPoi.java

Quick Actions:

[qa:Details] —> Activity 3: PoI Details

[qa:Get Directions] —> Activity 8: Directions

Activity 8: Directions

The activity where the user can select locations between which they wish to

see navigation help.

64 CHAPTER 5. IMPLEMENTATION

Involved classes: Buttons:

NavigateFrom.java [PoI drop down] Choose PoI

Poi.java [Navigate] Opens up Google Maps,

which gives you navigation support

Activity 9: Calendar View

The Calendar View is a view that lets you add PoIs in a tour in a time-

specific order. It also displays the amount of time the user has to spend

walking between each particular PoI in the tour.

Involved classes:

CalendarActivity.java

Trip.java

Time.java

Menu buttons:

[menu:Save Times] Save the created times in the database

[menu:Clear Times] Clear the times in the view

5.2.4 Implementation Classes

The class diagrams[14] shown in figure 5.2, 5.3, 5.4, 5.5 and 5.6 shows

the implementation of the diagrams in the architecture chapter (see section

4.2.1). Figure 5.2 shows the classes involved with the creation of PoIs and

Tours, figure 5.3 shows the classes involved in showing tours and PoIs in

a list. The classes in figure 5.4 handles the calendar view, whilst figure 5.5

shows the classes for viewing tours and PoIs in a map and finally. The classes

in figure 5.6 handles sharing and the downloading of new PoIs and tours.

5.2. IMPLEMENTATION DESIGN 65

Figure 5.2: Class Diagram 1

66 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Class Diagram 2

5.2. IMPLEMENTATION DESIGN 67

Figure 5.4: Class Diagram 3

68 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Class Diagram 4

5.2. IMPLEMENTATION DESIGN 69

Figure 5.6: Class Diagram 5

70 CHAPTER 5. IMPLEMENTATION

5.2.5 Implementation Database

The actual implementation of the databases described in section 4.2.2 is

realised as two different databases. The online database is realised using a

simple Http call using a Php web server. The local server is realised by a

SQlite server on the device. The reason for choosing this solution is because

the Android operation system has built in support for SQlite. The web server

is chosen because of the unstable connection nature of a mobile phone. A

database system without a persistent connection is recommended.

5.3 Implemented default Android components

As stated in the non-functional requirement specification (see section 3.4),

the use of default Android building blocks is encouraged. In the layout design,

we have chosen to use almost exclusively default Android components. The

only places the graphics of the Android look-and-feel has been changed are

on the start up screen buttons (see section 5.2.3), and on the tabs in the

plan activity (see section 5.2.3). Other default components we have used

is the intent-filtering system. We have implemented this to give the user

the ability to get directions to and from a PoI, and to send and receive

PoIs between users. Other default components are the implemtation of the

SQLite[10] database and the Google Maps components (see section 5.2.3)

from the Google API. The quickaction bar is a gui component implemented

after suggestion on the Google IO conferance[16]. The calendar view (see

section 5.2.3) was inspired and partly built on the AnCal application[19].

Chapter 6

Testing

An important part of the agile development model we have used is iterative

testing. Therefore, we have used the weekly meetings with the customer to

test the different aspects of the application. Because of this, we have decided

to conclude it all with a customer test, using all the use cases. Since the

use cases cover all of the functional requirements, a test of the use cases

will ensure that we fulfill all the functional requirements specified by the

customer. The scenarios section 6.2 is a collection of three scenarios that

will fully capture all of the requirements.

6.1 Client testing

Over the course of the project, we have demonstrated the application

weekly for our client. This gave us the opportunity to fix minor flaws and

change behaviour according to the client’s wishes. By doing this, we were

confident that all the requirements were fulfilled, and the final client test

could be completed successfully. The application was delivered to the client

on 11th of April for testing, and the final client testing was performed on

2nd of May and 9th of May.

6.2 Scenarios

Each of the three scenarios in this section will include multiple actions the

user can do.

Scenario 1 The user wants to make a tour from scratch.

Start by creating a new empty and free tour called My Tour. Filter the

71

72 CHAPTER 6. TESTING

list of PoIs by three categories, look through the PoIs in the three categories

and choose one PoI from each category to the newly created tour. Now you

should have a tour consisting of three PoIs. You would like to see that this

is true, so you will go to your tour, and check this. To make sure you can

use this for something useful, view your tour on the map. Loop through the

PoIs so you can clearly see that you have exactly those three you wanted.

Scenario 2 The user wants to plan and take a tour.

Start by selecting the fixed tour you would like to take through the city.

The screen with the list of all the PoIs contained in the tour will bve shown.

Review them to verify that this is the correct tour. Open the menu and go

into the timetable for this tour. On the timetable are some already set times

for the different PoIs, however, you would like to set new times. To do so you

open the menu and clear the time schedule for the tour. You then set new

times for each of the PoIs in the tour. Save the time schedule. Now, the time

has come to take the tour, so then you open its time schedule. You press

the heading of the first PoI you are supposed to visit; its information and

address appear. You get directions to the PoI and visit it. When the time

has come for you to leave and visit the next PoI you repeat this procedure,

until you have gone through your whole tour.

Scenario 3 The user wants to create a PoI, and download another from a

server, then share them both with his friend via Bluetooth.

You find yourself sitting at a beautiful cafe, wanting to share this PoI with

other people. Start off by opening the PoI creation menu via the menu in

the “Locations” list. Fill in the correct information in the fields and select

“Cafe” in the “Category” field. Save the PoI. Verify that your new PoI has

appeared in the “Locations” list. Then open the update list through the

menu to download the other PoI you are goind to share. Select the PoI from

the list of available PoIs on the server and select to update them. This PoI

should now also appear in your “Locations” list. To share these two newly

added PoIs with your friend, you open the sharing list from the menu in the

“Locations” list. Select the two newly added PoIs and start sharing them.

Doing so will prompt a menu where you can select different means of sending

the information. Select the e-mail function, fill in your friends e-mail address

and send it. Your friend should now receive the PoIs on his Android device.

6.3. TEST CASES 73

6.3 Test Cases

These are the test cases for our application. They are based on the use cases

in the requirements specification chapter (see section 3.3).

Table 6.1: City Explorer test case 1

Test Case #1: covers S{1.2, 1.3} 2011-05-04

Name List all downloaded PoIs
Summary The user must be able to browse places that have been

previously downloaded

Status Passed

Table 6.2: City Explorer test case 2

Test Case #2: covers S1.1 2011-05-04

Name Display the description of a single PoI
Summary Information such as an address, a picture, a description, the

openening hours, a website and a telephone number that is

recorded about a particular place is made visible

Status Passed

Table 6.3: City Explorer test case 3

Test Case #3: covers S{1.21, 1.3} 2011-05-04

Name Show the geographical location of a single PoI on

a digital map
Summary The map activity must be able to show where a particular

place is, in order to let users orient themselves and decide

on whether they wish to visit the place.

Status Passed

Table 6.4: City Explorer test case 4

Test Case #4: covers S1.4 2011-05-04

Name Filter listed PoIs by category
Summary Enables the user to filter pois by category

Status Passed

74 CHAPTER 6. TESTING

Table 6.5: City Explorer test case 5

Test Case #5: covers S1.5 2011-05-04

Name Display directions to a PoI in a digital map
Summary Launches Activity 9: Calendar View where the source and

destination between which the user wishes to navigate can

be selected before invoking Google Maps or other applica-

tion capable of giving directions

Status Passed

Table 6.6: City Explorer test case 6

Test Case #6: covers S1.6 2011-04-28

Name View a fixed tour
Summary Displays a tour in a time-table

Status Passed

Table 6.7: City Explorer test case 7

Test Case #7: covers S{1.61, 1.71} 2011-05-04

Name Display a tour in a digital map
Summary A user will want to see all PoIs that are associated with a

tour in the map.

Status Passed

Table 6.8: City Explorer test case 8

Test Case #8: covers S1.7 2011-05-04

Name List all PoIs in a free tour
Summary The user must be able to see all PoIs of a free tour in a list

Status Passed

6.3. TEST CASES 75

Table 6.9: City Explorer test case 9

Test Case #9: covers S1.8 2011-05-04

Name Cycle through all PoIs in a tour
Summary The user must be able to view all PoIs in a tour one by one,

and switching easily between them

Status Passed

Table 6.10: City Explorer test case 10

Test Case #10: covers S2.7 2011-05-10

Name Create a new tour from an existing tour
Summary The user may create a new free tour from an existing tour

Status Passed

Table 6.11: City Explorer test case 11

Test Case #11: covers S{2.61, 2.71} 2011-05-10

Name Create a new tour
Summary A user may create a new tour

Status Passed

Table 6.12: City Explorer test case 12

Test Case #12: covers S2.1 2011-05-10

Name Setting a PoI as a favourite
Summary The user may change a PoIs favourite status

Status Passed

Table 6.13: City Explorer test case 13

Test Case #13: covers S{2.2, 2.3} 2011-05-10

Name Create a new PoI
Summary The user may create new PoIs

Status Passed

76 CHAPTER 6. TESTING

Table 6.14: City Explorer test case 14

Test Case #14: covers S2.6 2011-05-10

Name Create a fixed tour from an existing tour
Summary The user may create a fixed tour from an existing tour

Status Passed

Table 6.15: City Explorer test case 15

Test Case #15 : covers S2.4 2011-05-10

Name Create a new PoI from an existing PoI
Summary The user may create new PoIs from existing PoIs

Status Passed

Table 6.16: City Explorer test case 16

Test Case #16: covers S{3.1, 3.2} 2011-05-10

Name Browsing and downloading PoIs stored on a

server
Summary The user can browse and download PoIs stored on a server

Status Passed

Table 6.17: City Explorer test case 17

Test Case #17: covers S3.3 2011-05-10

Name Sharing Pois between devices
Summary The user can share PoIs with another user

Status Passed

Table 6.18: City Explorer test case 18

Test Case #18: covers S{3.4, 3.5} 2011-05-10

Name Browsing and downloading tours stored on a

server
Summary The user can browse and download tours stored on a server

Status Passed

Chapter 7

Follow-up Work

This chapter contains suggestions for developers wanting to extend and im-

prove on the work done during this project.

7.1 Back end system

Since the specification did not include the construction of a back end In-

ternet server system, the testing system implemented in the program is very

simple. A more complex system should be implemented in the future. The

current system is based on csv-files[20] simply because they are very easy to

parse. The new back end system could possibly communicate with the pro-

gram using another file format, since the csv file format is less standardised

and has less support for meta-data than for example the xml[21] file format.

The back end implemented by the group for testing is based on static csv-

files hosted on a web server. The future back end should implement a proper

database system. The important thing to consider is to base the protocol

used in the communication between the back end system and the program

on a protocol with a non-persistent connection. This is discussed further in

the implementation chapter (see the implementation database section 5.2.5).

7.2 Web Portal

One of the more novel features of City explorer is the ability to create and

share user created content with other users of the software. A web portal for

the program’s user community would allow users and tourist offices to create

and update content themselves. To facilitate this, the ability to upload tours

and pois directly to a web server could be integrated.

77

78 CHAPTER 7. FOLLOW-UP WORK

7.3 Sharing of Tours

One point on the original specification list that was removed was the abil-

ity to share tours. The reason for this is quite technical. The pois in the

local database holds two identifiers, one private ID which identifies the poi

in the local database, and one Global ID which identifies the pois in the

local database that has been downloaded from the Internet. When a poi is

downloaded, it is assigned a private ID. The problem is when you transfer a

poi without a Global ID there is no way to distinguish the newly added poi

from other pois, since it is automatically assigned a private ID by the SQLite

database. Since the private ID is the ID used to assign a poi to a tour, a

newly imported poi without a global ID can not be assigned automatically.

A temporary identifier could be used to get a handle to the imported poi.

But since this method could not eliminate pois already in the database from

being duplicated, the decision to remove this specification was reached in

agreement with the customer. A method for comparing pois based on con-

tent, and a temporary ID could be implemented to resolve this issue in the

future.

7.4 Advanced Rating System

One of the ideas discussed in the early parts of the project was to imple-

ment an advanced rating system, storing several bits of information about

a review and the reviewer. By doing some simple statistics, a system could

make very good recommendations for other users based on the user’s data

(age, interests etc.)

7.5 Social Media Pages

This type of application could benefit from social media site integration.

The information shared on these pages could automate an advanced rating

system (see section 7.4). The sharing of tours and pois could also be in-

tegrated in to the site or sites. Automatic ”check-in” (sharing of a user’s

location) could also be integrated.

7.6. PLUG-IN SYSTEM 79

7.6 Plug-in System

The ability to associate behaviors to PoIs (e.g. games) through the plug-

in of PoI-specific components was a point on the specification list that has

been removed in agreement with the customer. The reason for the removal

of this point was uncertainty about how it should be implemented. Two

solutions were discussed. First a solution is a pure Android based plug-in

system[22]. The problem with this is that deployment becomes difficult,

since the developer of the plug-in has to know how City Explorer works.

Another problem is that the plug-in software will only be usable together with

City Explorer. The last downside is that the plug-in has to be downloaded

separately from the application in the Android Market. On the other hand,

one upside to this solution is that it is very flexible and fast, allowing for

use of all the features of the Android system, as well as allowing for off-line

use. The other solution discussed was a web based solution. This allows for

easy deployment and updating, no separate downloading required, and the

plug-in code can be reused for other web based content. The downside of

this solution is that it requires the phone to be connected to the Internet.

Both of these solutions could be implemented in the future.

7.7 Support for non-SI units

The specification did not mention the use of units, so SI units of measurement[23]

and the 24h time was implemented. The reason we chose this implementa-

tion is because most of the people in the world are using SI units. The units

are hard coded in to the application, but can easily be changed. A setting to

choose the units should be implemented to accommodate different locales.

7.8 Translation

The specification did not mention the use of language, so English seemed to

be the most suitable language. The reason we chose this language is because

English is understood by most of the people in the world. Most of the text

written in the application is written in a separate string.xml file, so it is easy

to translate. Some of the text is hard coded, but this should also be easy to

change.

80 CHAPTER 7. FOLLOW-UP WORK

7.9 Integration with UbiCompForAll compo-

sition tool

When the UbiCompForAll composition tool and back end system has been

developed and deployed, some changes to the software have to be made. The

integration with the composition tool is on the non-functional requirement

list located in the requirement specification chapter (see section 3.4), but

since neither the tool, nor the back end was deployed at the time of develop-

ment, the requirement could not be met.

Appendix A

Meetings

This appendix includes all of our meeting dates, and some meeting min-

utes which shows examples of how the meetings were conducted. The table

A.1 shows an overview of all the formal meetings we have had. The reason

we only had three formal group meetings is because our working sessions at

school served as forums for our discussions, and we did not find it necessary

to document all those discussions. The formal group meetings (see section

A.1) includes the meeting minutes for those that were documented. Regard-

ing the meetings with the client (see section A.2), only some examples are

documented, because they were performed very similarly all the time. Most

of these meetings we were going through the requirement specification list

and discussed and tested which requirements that was done. The meetings

with our supervisor (see section A.3) is also some examples, because these

meetings were almost the same everytime as well. We were going through

the report, and got feedback on what we could do better.

81

82 APPENDIX A. MEETINGS

Table A.1: Our meetings

Group Client Supervisor

20. Jan. 2011 24. Jan. 2011 24. Jan. 2011

26. Jan. 2011 31. Jan. 2011 7. Feb. 2011

11. Mar. 2011 7. Feb. 2011 2. Mar. 2011

14. Feb. 2011 11. Mar. 2011

28. Feb. 2011 16. Mar. 2011

7. Mar. 2011 25. Mar. 2011

14. Mar. 2011 1. Apr. 2011

28. Mar. 2011 11. May. 2011

4. Apr. 2011

11. Apr. 2011

2. May. 2011

9. May. 2011

A.1 With Group

A.1.1 20. Jan. 2011

Present: Jaroslav, Kristian, Christian, Belen

General thoughts and suggestions Either Google docs or a flat file in

a SVN repository may be used to store the project documentation. So far

we have one vote for either option and two neutral votes.

We will most likely use an agile methodology to work with the project.

Scrum was suggested because some of the members are familiar with it.

In reality we will probably have to assimilate elements from other models

and remove or alter elements of Scrum because of the constraints of our

environment (students working on a project).

A meeting with our supervisor was proposed to be held on Monday 24.

Jan 2011. None of the attending members of the group could think of any

questions for him. We have to just meet him and listen to any advice he

might have for us. It is probably wise to speak with him before we meet the

client.

We need to find a date to meet with the client. She has sent us an email

with a request to fill out a ”doodle” in order to figure out a time which is

good for everybody.

A.1. WITH GROUP 83

A series of questions was asked during the meeting which the non attending

members are urged to think about. Some of them include: Do you have an

Android phone? Have you got any experience with the platform? Do you

have any preferences regarding the development model for the project? Do

you have any questions for the client?

Because of the clumsy nature of email when there are more than two

participants in a conversation, creating an IRC channel was suggested. Some

good clients are X-chat, mIRC, Irssi and for those of you with smart phones

there are probably good alternatives in your favourite app store. Have a look

and tell us what you think.

Questions for the client

- Do we get a SVN repository?

- Are there any competing applications?

- Has any research been done among potential users?

- Do we get one or more Android phones to develop on?

- Which version of the platform are we supposed to develop on?

- Is there a back end for the information to be stored?

- If a back end exists, what formats does it use? Is there any documen-

tation?

- Do we need to write an application for PCs and tablets?

- Why is it a good idea to develop this application? (For the report)

- Are we trying to provide an alternative to something?

- Is there huge money to be made?

- Someone’s personal dream?

- Does the intended functionality of the application (e.g. navigation

using Google Maps) violate some license?

Preliminary report due on 31. Jan. We had a look at the requirements

for the preliminary report defined in one of the documents on It’s Learning.

The following points must be documented:

- Development model (waterfall, scrum, XP)

- Description of the environment

- Definition of the problem

+ Description of the application

+ Functional and non-functional requirements

84 APPENDIX A. MEETINGS

- Possible obstacles we are facing: map license (means we will use open-

streetmap.org), inadequate knowledge of the Android platform

- Brief outline of alternative solutions

- High level outline of the architecture

- Team description (roles and members)

- Basic time plan

Homework Think about what to ask the client and the supervisor, read

the documents attached in the email from the client and read up on Android.

A.1. WITH GROUP 85

A.1.2 6. Jan. 2011

Present: Jaroslav, Christian, Belen

Short summary We continued more or less were we left off the last time

which means that the main focus of our discussion was centered around the

report. We worked out the table of contents in more detail and talked about

what the different sections should contain. The structure presented in the

”Preliminary report table of contents” below does not have to be how we put

the document together in the final version, but it would be nice to have a

logical flow.

Preliminary report table of contents

• 1.0 Introduction to the project - problem definition - high level diagram

to show our ”corner” of the client’s system

• 1.x Introduction of the group

- roles and responsibilities

- scrum has a flat structure and we think it fits our group well

- difficulty of assigning a leader is present even more than in any other

situation be cause we do not know each other - we are not avoiding

responsibility, but sharing it because

the grade is shared and because it is too easy to blame

some particular role in a project. Everyone has every role.

• 2.0 Model description - choice of process model - the client made it

clear that changes might arise

- we are welcome to suggest features

- the client needs first and foremost a good GUI. Making several

prototypes is an approach to GUI development with many

practical benefits.

- the group is comfortable with agile development because we know it

from before

• 2.x Development environment

- Eclipse, Android 2.2, SVN, MySQL

- Why are we choosing these environments? - Primarily phones, but

86 APPENDIX A. MEETINGS

also a tablet if the client provides it

• 3.0 Project description

- more diagrams: program classes, architecture, use cases etc.

- description of the technical issues - possibly a handbook for the ap-

plication

- features of the application

• 3.x Description of a layered app and the layers

- UI, interface, back end and other modules

- back end is not going to be very solid or reusable

- focus on UI and an interface to a swappable DB

• 3.x Requirement specifications

- functional

- non-functional

- some changes are justly desired because there are cases of incoherence

in the list of features between some highly prioritized items and the

envisioned development progress

- the client needs to know that their list is problematic

• 4.0 Brief outline of alternatives

- why are we writing this app?

- reuse client’s research

• 5.0 Miscellaneous

- time plan

- risk analysis

Notes This outline might have gone somewhat beyond what is necessary

for the preliminary version. Nevertheless, members present at the meeting

took the liberty of either assigning to others, or divide amongst themselves,

all sections mentioned in the ”Preliminary report table of contents” above:

1.0 - Everyone 1 and 2 (Group intro) - John Arne 1.0 and 3 (Diagrams)

- Christian 3 (Requirements) - Kristian 3.0 (Only a start) - Belen 5 and 4

(Risk excluded) - Jaroslav

Homework You might or might not remember from English class an exer-

cise where pupils are instructed to summarise a story or present an idea in 50

A.1. WITH GROUP 87

words or less. The idea is that you write half a page, figure out what is really

essential, trim it down to 50 words (2-4 sentences) and discard everything

else. This might be a good way to present our problem in the very beginning

of the report. The assignment is for everyone to make a few sentences, so

that we may pick out some good ideas and put together a mean definition of

our problem in a compact paragraph.

We need to do some work before the weekend. Everyone works on their

sections until 17:00 on Thursday (27. Jan. 2011) and upload what they have

by then. The idea is for us to have something to talk about when we meet

on Friday. The section 1.0 problem definition is for Friday.

88 APPENDIX A. MEETINGS

A.1.3 11. March. 2011

Present: Jaroslav, Christian, Oscar

The report needs updating Some things that needs to be done are listed

in the next paragraph, other things that were pointed out by the supervisor

at the last meeting will be mailed by Christian any minute now.

Report ”To do’s” for Tuesday 15. Mar. 2011

- Move sprints to the appendix

- Split the following specifications: 1.2 1.5 1.6 1.7 2.2 2.5 2.6 2.7

- Risk list: write about it (Oscar)

- Architecture: write section text (Christian)

- New section: glossary

- Intro: remove ”(henceforth CE)”

Poor planning In order do be able to predict the impact of someone loos-

ing time in a sprint, we will have to assign or pick all tasks in a sprint before it

starts. To solve the problem further, that is, to be able to predict the impact

on the project result of a member quitting or similar, we will assign respon-

sibilities to people. The responsibilities will be the various work-packages.

Homework See ”To do’s” and the mail from Christian.

A.2. WITH CLIENT 89

A.2 With Client

A.2.1 24. Jan. 2011

• We will receive one device for development

• The client wants to see a plan of the project for the next meeting

• The project will be licensed under the Apache License

• Future meetings will find place in Sintef ITC on Mondays at 14:15

• A PoI might be/contain:

– Description

– Game

– History Application

– Quizzes

• A tour can contain several PoIs

• We were asked to think about how to make the application work in

offline and online modes

A.2.2 31. Jan. 2011

Comments on the preliminary report

• Remember to write on the importance of documentation

Until the next meeting

• Make diagram for the GUI.

• Working on simple GUI components.

A.2.3 7. Feb. 2011.

Comments on the preliminary report

• Justify our choices for development environment. (e.g. MySQL)

• The architecture is not documented

• Backlog: should be more detailed and specify when the various parts

will be done (does not really work that way)

Comments on the GUI (see figure 4.2)

• Button to edit a tour.

• Add poi from map (minimum time for GPS to stabilize?)

90 APPENDIX A. MEETINGS

• New/edit PoI screen: enable setting the location on a map, or by using

your current location.

• Tour screen:

To-from times on each POI

How long do we spent in each place?

Calendar view

• How to distinguish my own content from public?

Other

• Consider using local and/or Internet database. We will try both.

A.2.4 14. Feb. 2011

Present: Jaroslav

• Non-f.req.: Should be extendible to accommodate new types of PoI

entities.

– Open a poi as a game

– Activities related to places or cities

• The importance of modifying user created content was stressed

• Sprint 3:

0. Last sprint

1. PoI on map, map <-> list (poiview)

2. Calendar view

3. Map - fixed tour

• A local database was more important than an Internet based because

the client intended to bring this prototype to possible stakeholders such

as ”arkitektforeningen” and ask them about making a tour out of their

book about Trondheim, for example.

• We agreed on the term ”tour” instead of ”itinerary” which was origi-

nally proposed by our client.

A.2.5 28. Feb. 2011

Present: Jaroslav, Belen, Christian, Kristian, Oscar

Items for sprint5

A.2. WITH CLIENT 91

• Display modes for a tour: List view and calendar view

• Create an activity for selecting or entering details about ”to” and

”from” before invoking Google Maps context aware (pois in a list of

suggestions should be in proximity of location

• Add a menu button in tour view: [get directions]

• Add a button to QA in map-view: [navigate here]

Other

• Send .apk to the client

• Collect signatures from members who have not signed the contract

• Documentation (the most significant parts of the api are): The API

(javadoc) and architecture models

• ”My way is not the only way” - make suggestions to alternative ap-

proaches

92 APPENDIX A. MEETINGS

A.3 With Supervisor

A.3.1 24. Jan. 2011

Present: Jaroslav, Kristian, Belen, John Arne

This meeting was just a formality so we could meet our supervisor. He

talked a little bit about what he could do for us, and what he could not

do. To sum up, he can only assist us with the project management and the

report. He will not provide us with assistance regarding the application.

A.3.2 7. Feb. 2011

Comments on the preliminary report and work so far

• We have to provide rationale for why we will not use commandline or

e.g. NetBeans instead of Eclipse.

• We have to have a status report, so we can be more aware of some

issues during the project.

• We need a risk analysis.

• Meeting minutes should be in the report.

• We have to have one person that makes all contact with the customer

and the supervisor.

• We need to include the difference between functional and non-functional

requirements.

• Improve the structure of the report.

• All members of the group have to read through the report, so that we

catch typos and poor sentence structure.

• A more objective perspective is needed when writing the report.

• Need to add references to things like SCRUM, MySQL and other tools

or brands we are using.

• Need to add estimated hours and actual hours on the different phases

of the project(e.g. in the sprints).

• Send everything to the supervisor at least 24 hours before a meeting

with him.

Appendix B

Status Reports

Some of the column headers in the activity

plan are abbreviated. Their meaning is

defined to the right:

WP Work package

Res. Resource

Est. Work hours planned

Hrs. Work hours spent

B.1 Status report: sprints 1 and 2

The first two sprints of our project were spent working on a sketch of the

GUI. After the GUI navigation flow was done, we worked on realising the

GUI elements in terms of Android’s XML layouts. We spent the first week

working on the project documentation and with the backlog.

Group update We discussed the content of the preliminary report and

delegated sections for everyone to work with. We abandoned the google docs

repository and made a report folder in the SVN repository for the documen-

tation with plain-TEXt files instead.

Progress summary Tasks that have been performed by the group are

described in sprints 1 and 2, see tables C.2 and C.3 in section C.2.

Problems

- GUI components not properly documented

- Architecture design missing

- Routines not followed or documented (sprints, status reports)

93

94 APPENDIX B. STATUS REPORTS

B.2 Status report: sprints 3 and 4

City Explorer graphic user interface works and can navigate through some of

the different options. The Plan activity shows a list of PoI and is able to show

them on a map. The Map activity can show a tour with a path between them.

A class has been written for both MySQL (JDBC) and SQLite (Android).

Group update Christian was ill during the first week of this period.

On the 20th John Arne informed us that he was leaving to attend his

grandfathers funeral and would not be back until the following Sunday. Since

the midterm delivery is due this week, the rest of the group has to increase

their workload. The group has unfortunately not worked sufficiently evenly

with the report up till now, and as an effect, we are unable to follow the risk

analyses exactly, and have to increase the number of hours worked by the

rest of the group.

The group agrees to work more steadily with the report to avoid this

situation in the future.

During the last days of the period, some members does not contribute to

the satisfaction of the rest. The rest of the group have to work even more

hours to cover for the work not being done by these members in addition to

John Arnes work.

The Facebook group page does not seem to be read by all members, despite

them being urged to read it as well as reprimanded via mail for not doing so.

Progress summary During the period of sprint 3 and 4, alot of work has

been done on the report aswell as the GUI of the application. We now have

a functioning user interface, which makes it easier to do personal testing on

the application. Detailed tasks are described in Sprints 3 and 4, see tables

C.4 and C.5 in section C.2.

Problems

- GUI components not properly documented

- Architecture design missing

- Some members participating less than desired

Need to discuss the situation

- Time spent on project activities not documented

- Flat group structure not working

B.3. STATUS REPORT: SPRINT 5 95

Risk analysis updates Added an entry for illness.

B.3 Status report: sprint 5

Some items from the previous sprints have accumulated to this date. Our

source code has more functionality than the GUI can show. The intention

for these two weeks was to resolve those issues.

Group update A lot of programming and report work is done at the start

of this sprint, mainly by 4 members of the group. Attempts to make the

remaining members contribute failed due to unresponsiveness to emails and

Facebook messages. After the first week of the period Belen informs us by

mail that she was dropping the subject because she did not feel she was able

to contribute satisfactory, listing time constraints and lack of knowledge as

reasons.

The risk analyses does not give a complete picture in this type of event. In

reality the consequences, and the solution is more complex. There are three

possible outcomes and solutions to problem. The first is that the group have

to take on the entire workload for the leaving member. The second outcome

is to agree with the customer to reduce the workload by dropping some of the

lower priority specs. The final solution is to compromise between the first

two outcomes. The rest of the group takes on some of the responsibilities of

the missing member as well as reducing the total workload.

In a usual case, the choice of solution is governed by cost, but since the

only resource we have in this project is time, the increase in cost is acceptable

as long as the group members are able and willing to work more. The group

will probably not be able to take on all of the responsibilities and workload of

the missing member, so the solution chosen is the compromise solution. The

group will discuss with the client about dropping some of the requirements.

We anticipate that this will be fine based on discussions on the subject in an

earlier meeting.

After discussing amongst the group and having a meeting with the client,

alot of changes have been made to the functional requirements, see the para-

graph “Requirements update” B.3 below for details.

Progress summary Tasks that have been performed by the group are

described in Sprint 5 C.6 (section:C.2).

96 APPENDIX B. STATUS REPORTS

We have had to postpone some of the milestones. One problem caused

by this is that tailoring and sharing requirements have to be documented

after the deadline for delivering a version of the report to which we can get

comments. We will have to finish the documentation of those parts as much

as possible before the implementation is completed in order to benefit from

comments by the supervisor.

Requirements update

- requirement 1.2 has been split into 1.2 and 1.21

- requirement 1.6 has been split into 1.6 and 1.61

- requirement 1.7 has been split into 1.7 and 1.71

- requirement 2.6 has been split into 2.6 and 2.61

- requirement 2.7 has been split into 2.7 and 2.71

- requirement 2.2, previously being “Showing favourite PoIs in a list view

or in a map view”, was dropped and rewritten as “Adding categories

to user created PoIs”.

- requirement 2.3‘, “Easily switching between a favourite PoIs list view

and map view”, was dropped because it is covered in 1.3.

- requirement 2.4, “Filtering favourite PoIs according to categories” was

dropped because it is covered in 1.4.

- requirement 2.5, “Navigation to a favourite PoI from the current loca-

tion or any other place”, was dropped because it is covered in 1.5.

- requirement 2.8, “Showing a fixed tour created by the user in a calendar

or in a map” has been dropped because it is covered in 1.6 and 1.61.

- requirement 2.9, “Showing a free tour created by the user in a calendar

or in a map” has been dropped because it is covered in 1.7 and 1.71.

- requirement 2.10, “Going through a tour created by the user”, has been

dropped because it is covered in 1.8.

- requirement 2.11 has been moved to 2.3.

- requirement 2.12 has been moved to 2.4.

Problems

- stil many shaky sections in the report.

- status reports not done properly.

- sprint 6 not planned.

B.4. STATUS REPORT: SPRINT 6 97

B.4 Status report: sprint 6

Two meetings have been held with the supervisor in this period, 16th and

25th of March. We received comments on the report; improvements were

made.

Group update After the mid semester report delivery and correctionsafter

comments from the supervisor, the group puts the report out of their minds

and starts focusing on the coding. This results in that a lot of progress

is made on the program; several classes are made which makes the general

outline of the program and workload easier to visualize for all of the group

members. Positive feedback on the program is received by the customer from

the meeting 14th of March.

Progress summary Programming is done on details of PoIs, bugs are

fixed, icon support for MapView is implemented, and more. In general,

alot of refining has been done on the program. See table C.7 for detailed

information.

Problems

- still many shaky sections in the report.

- people are still bad at documenting work.

B.5 Status report: sprint 7

Two weekly meetings with the client has been held, 28th of March and 4th

of April, and testing on the application based on the use cases was done on

both dates.

Group update The group has talked about the importance of document-

ing work, not only the documentation done in the backlog for use in the

report, but also the importance of documenting the changes comitted to the

SVN server. These comments are very useful when developing, since one can

easily check what has been done recently by other developers.

Progress summary In addition, research has been done on how to imple-

ment calendar times to the tours, and it seems to show that the hours on

98 APPENDIX B. STATUS REPORTS

this is overestimated. See table C.8 in section C.2 for more details on work

done in sprint 7.

Problems

- time constraints may lead us to not being able to implement the “Shar-

ing requirements”(see table 3.3 in section 3.1).

B.6 Status report: sprint 8

During this period two meetings have been held with the client, on the 11th

of April and 2nd of May. A meeting with the supervisor was held at 1st of

April.

Group update Since the start of this period we’ve had trouble contacting

Jaroslav, which has resulted in no work being done by this group member the

last weeks. Attempts to contact him via e-mail, phone and facebook have all

proven unfeasible. While the group is concerned, both about the condition

of the grou member aswell as the time constraints, nothing is done on this

problem except for increasing the work load on the remaining members.

Progress summary After meetings with the client, several changes were

recommended. Some of the time in this sprint went to correcting them. See

table C.9 in section C.2 for more details on work done in this period.

Problems

- unable to get a hold of a group member for weeks.

B.7 Status report: last call

During this period one meeting was held with the client on the 9th of May.

Testing was perfomered with the client on the finished application. The client

seemed to be pleased with the result.

A meeting was held with the supervisor to dicuss the uneven workload

during the project, aswell as the group member who has been missing for

several weeks.

B.7. STATUS REPORT: LAST CALL 99

Group update The supervisor recommended us to set up a work dis-

tribution chart, depicting how the total workload of the project has been

distributed among the group members. Work on that was done this week

and the results were sent to the supervisor.

Continuing efforts to contact the missing group member have proven to

be less than successful. The group reached him on the phone at one point,

but the only responce from him was that he was not very motivated to work.

We have yet to reach him since. This has been grounds for concern from the

rest of the group; since this was the last week before delivery there has been

a lot of work to be done.

Progress summary The last planned elements of the applications were

implemented before the meeting with the client at the beginning of the sprint.

After that, mostly work on the report has been done.

On the report we have refined alot of the sections, and gone through the

whole report correcting typos and other erroneous elements. See table C.10

in section C.2 for more details on work done in this period.

Problems

- at time of delivery, Jaroslav is still not reachable.

100 APPENDIX B. STATUS REPORTS

Appendix C

Backlog

This appendix includes the Project backlog and all of the sprints. These

concepts is a part of the SCRUM development model [7].

C.1 Project backlog

Table C.1 shows us the project backlog. This is an overview of all the

sprints.

101

102 APPENDIX C. BACKLOG

T
ab

le
C

.1:
P

ro
ject

b
ack

logS
p
rin

t
N

r.
1

2
3

4
5

6
7

8
L

ast
call

Item
title

D
escrip

tion
R

eq
u
irem

en
t

sp
ec.

H
rs

est
102

98
87

87
186

220
191

174
270

R
ep

ort
W

ritin
g

th
e

d
o
cu

m
en

tation
49

52
64

66
18

172
M

ain
ten

an
ce

R
esolv

in
g

issu
es,

co
d
e

d
o
cu

m
en

tation
,

u
p

d
atin

g
elem

en
ts

43
16

17
2

52
9

M
an

agem
en

t
P

lan
n
in

g
activ

ities,
m

eetin
gs

16
13

2
10

3
3

7
D

esign
G

rap
h
ical

an
d

stru
ctu

ral
d
esign

an
d

im
p
lem

en
tation

10
6

12
16

14
12

P
oI

D
isp

lay
in

g
in

form
ation

ab
ou

t
a

P
oI

S
1.1

2
12

11
8

2

P
oI

n
ew

/ed
it

C
reatin

g
a

P
oI

S
3.3

S
2.11

S
2.12

S
2.2

T
ou

r
n
ew

/ed
it

C
reatin

g
a

tou
r

S
2.6

S
2.61

16
8

3
S
.27

S
2.71

S
3.6

T
ou

r
D

isp
lay

in
g

in
form

ation
ab

ou
t

a
tou

r
S
1.6

S
1.61

S
1.8

22
29

12
25

11
S
1.7

S
1.71

M
ap

v
iew

D
isp

lay
in

g
P

oIs
an

d
tou

rs
in

a
m

ap
S
1.21

S
1.61

S
1.71

42
0

6
12

17
4

S
1.3

S
1.5

S
2.1

P
lan

S
h
ow

in
g

tou
rs

an
d

P
oIs

in
a

list
S
1.4

S
1.2

S
1.3

24
11

6
24

25
16

S
3.4

S
3.5

S
3.1

S
3.2

S
2.1

S
1.5

O
th

er
B

u
gfi

x
in

g
an

d
co

d
in

g
th

at
d
o
es

n
ot

fi
t

in
oth

er
categories

S
3.6

4
1

19
24

36
28

D
atab

ase
S
tore

an
d

retrieve
in

form
ation

S
3.1

S
3.2

S
3.6

10
12

9
5

S
3.4

S
3.5

S
3.6

H
ou

rs
S
p

en
t

108
81

61
73

168
154

139
164

232

C.2. SPRINTS 103

C.2 Sprints

Table C.2 through table C.8 shows us all of the sprints in the project.

The sprints includes sprint items, which is small packages of work that needs

to be done. It also shows us the estimated time of each individual sprint

item, the persons who is responsible for doing them, and actual hours spent.

The top rows in the tables indicate the initials of the group members. C is

Christian Berg Skjetne, K is Kristian Greve Hagen, J.Ø. is John Arne Øye,

O is Oscar Aarseth, J.R. is Jaroslav Rakhmatoullin and B is Maria Belen

Gallego Garcia.

C.2.1 Sprint 1

Table C.2: Sprint 1: 31st of January - 6th of February

Backlog Item Sprint

Item

Description Hrs

est

O C J.Ø. J.R. K B

Report 1 Problem description 4 3 2 2

Report 2 Architecture 5 4

Report 3 Group organization 3 2 2

Report 4 Requirement specifications 4 4

Report 5 Development environment 8 2 2 2

Report 2 Time plan 3 4

Report 7 Alternatives 3 4

Report 8 Sketching GUI 15 3 3 3 3 3

Report 9 Digitalizing GUI 3 3

Management 10 Meeting with the client 5 1 1 1 1

Management 11 Meeting with the group 5 1 1 1 1 1

Management 12 Backlog: Initial version 3 2 2

Management 13 Backlog: Sprint 1 1 1

Management 14 Backlog: Sprint 2 1 1

Management 15 Setting up Mumble 1 1

Maintenance 16 Environment: Eclipse 10 2 2 2 2 2

Maintenance 17 Environment: SVN 10 2 2 2 2 2

Maintenance 18 Environment: Android SDK 10 2 2 2 2 2

Maintenance 19 Mobile phone drivers 5 3

Maintenance 20 Report: Latex 3 4 6

Total 102 17 24 20 26 21 2

104 APPENDIX C. BACKLOG

C.2.2 Sprint 2

Table C.3: Sprint 2: 7th of February - 13th of February

Backlog Item Sprint

Item

Description Hrs

est

O C J.Ø. J.R. K

Management 10 Meeting with the client 5 1 1 1 1

Management 21 Meeting with the supervisor 5 1 1 1 1

Management 11 Meeting with the group 5 1 1 1 1 1

Poi 22 Menu buttons for navigating to PoI de-

tails and mapview: S1.1, S1.3

3 2

Plan 23 Showing PoIs in a listview: S1.2 20 3 3 18

Map view 24 Showing PoIs in a mapview: S1.21 30 2 15 4 5 1

Map view 25 Showing a free tour in a mapview:

S1.71

30 5 5 5

Total 98 10 23 15 11 22

C.2. SPRINTS 105

C.2.3 Sprint 3

Table C.4: Sprint 3: 14th of February - 20th of February

Backlog Item Sprint

Item

Description Hrs

est

O C J.Ø. J.R. K

Management 10 Meeting with the client 5 2

Design 26 Splash screen 15 10

Database 27 Create locations for testing 10 4 6

Plan 28 Connect poi list view to a provider 2 2

Plan 29 Selecting favourite pois: S2.1 12 8

Plan 30 Add support for categories 6 1

PoI 31 Create an activity for displaying infor-

mation about a place: S1.1

5 2 2

PoI 32 Create the layout of the details of a PoI:

S1.1

4 8

Map view 33 Make the map pins react to actions and

add support for zooming

8

Maintenance 34 Revise the Backlog 10

Maintenance 35 Switching views (QuickActionPopup):

S1.3

8 12

Maintenance 36 Rewrite the PoI list to use an Adapter

in a ListView

2 2 2

Total 87 0 8 7 26 20

106 APPENDIX C. BACKLOG

C.2.4 Sprint 4

Table C.5: Sprint 4: 21st of February - 27th of February

Backlog Item Sprint

Item

Description Hrs

est

O C J.Ø. J.R. K

Management 10 Meeting with the client 5

Tour 37 Showing a free tour in a list view: S1.7 30 12 10

Other 38 Figure out how to pass data between

activities: S1.3

5 2 2

Plan 30 Add support for categories 6 4

Plan 39 Enable the search button to bring up a

search and filter overlay: S1.4

3 2

Design 40 Theme and style touch ups 5 2 4

Map view 33 Make the map-pins react to actions and

add support for zooming to them

8 6

Database 41 Create database schema 5 4 4

Database 42 Add support for fetching data from the

database

5 4

Maintenance 34 Revise the Backlog 10 4 8

Maintenance 43 Set up the databases: MySQL and

SQLite

5 5

Total 87 6 21 0 22 24

C.2. SPRINTS 107

C.2.5 Sprint 5

Table C.6: Sprint 5: 28th of February - 13th of March

Backlog Item Sprint

Item

Description Hrs

est

O C J.Ø. J.R. K

Design 32 Improve the layout of the details of a

PoI: S1.1

6 8

Design 44 Xml layouts and bitmaps: S1.5 10

Design 45 Xml layouts and bitmaps: S2.6 8 4

Tour 46 Show fixed tour in mapview: S1.61 8 8

Tour 47 Make a quick action for all PoIs in a

list: S1.5

4 6

Tour 25 Show free tour in mapview: S1.71 15 5 4

Tour 37 Showing a free tour in a listview: S1.7 6 2 4

Plan 48 Show favourite PoIs in listview: S1.2 5 4 3

Plan 49 Make the PoI list respect the filter se-

lections: S1.4

8 2 8

Plan 50 Show favourite PoIs in mapview: S1.21 5 4 3

PoI 51 Menu button in detailview: S1.5 6 6

PoI 29 Selecting favourite PoIs: S2.1 5 4 1

MapView 52 Make a quick action for all PoIs in a

map: S1.5

16 10 2

Tour edit 53 Create New Tours activity: S2.6, S2.7 16 16

Maintenance 54 Add author field to tours and PoIs:

(S2.6, S2.7, S2.10)

1 1

Maintenance 55 Update the affected tables in the

database, make new primary key

1 1

Database 56 Convert from MySQL to SQLite 6 9

Other 57 Add support for installing to SD card 1 1

Other 58 Create intermediate activity between

”navigate to” and Google Maps: S1.5

16

Report 59 Write status report, risks, stakeholders 16 5 16

Report 60 Formatting and user interface 8 8

Report 61 Use Cases 9 2 9

Report 62 WBS 6 6

Report 63 Requirements and sprints 4 2 4

Total 186 9 41 30 47 41

108 APPENDIX C. BACKLOG

C.2.6 Sprint 6

Table C.7: Sprint 6: 14th of March - 27th of March

Backlog Item Sprint

Item

Description Hrs

est

O C J.Ø. J.R. K

PoI 64 Add support for images: S1.1 6 6 2

Tour 65 Loop through all PoIs in a tour in a list

view: S1.8

6 2 3

Tour 47 Make a quick action for all PoIs in a

list: S1.5

8 2 2

Tour 66 Create activity calendarview: S1.6 40

Tour 37 Showing a free tour in a listview: S1.7 7 3

Design 67 Redesign menubuttons: S1.1 6 1 6 1

Design 45 Xml layouts and bitmaps: S2.6 8 4

Design 44 Xml layouts and bitmaps: S1.5 10 4

MapView 52 Make a quick action for all PoIs in a

map: S1.5

8 8

MapView 68 Add support for icons 5 8

MapView 69 Show all nearby PoIs when clicking on

explore

3 1

Tour edit 53 Create activity for creating tours: S2.6,

S2.61

16 8

Management 70 Make a general strategy for how to cre-

ate the calenderview

16 10

Report 61 Use Cases 3 10

Report 61 Make Use Cases for Tailoring and Shar-

ing

20 5 10

Report 59 Risk list: Sort by severity 1 1

Report 71 Add glossary 5 1

Report 72 Handle suggestions from the supervisor 10 4 6 3

Report 73 Make status report for sprint 4 10 2 8

Report 74 Make status report for sprint 5 6 2 2 2 6 2

Other 58 Create intermediate activity between

”navigate to” and Google Maps: S1.5

16 12

Other 75 Bugfixing 10 4 1 1 1

Total 220 11 41 19 35 48

C.2. SPRINTS 109

C.2.7 Sprint 7

Table C.8: Sprint 7: 28th of March - 10th of April

Backlog Item Sprint

Item

Description Hrs

est

O C J.Ø. J.R. K

Management 10 Meeting with the client 5 1 1 1

Mapview 76 Loop through all PoIs in a tour in

mapview: S1.8

4 4

Design 67 Redesign menubuttons: S1.1 1 1 1 1

Design 77 Redesign tab buttons: S1.1 12 6 5

Tour 66 Create activity calendarview: S1.6 40 18 6

Tour 78 Quick action for making a new tour out

of an existing: S2.6

4

Tour 79 Xml layouts and bitmaps: S2.6, S2.7 2 1

Tour edit 53 Add field free or fixed in new tour:

S2.6, S2.61

2 3

Report 80 Fix the changes recommended by the

supervisor

80 4 15 3 10 25

Report 81 Update database diagram with new

fields and primary keys

2 2

Report 61 Use Cases 3 1 1

Report 61 Make Use Cases for Tailoring and shar-

ing

10 5

Report 82 Make status report for sprint 6 16

Other 75 Bugfixing 10 2 5 12 5

Total 191 4 44 22 27 42

110 APPENDIX C. BACKLOG

C.2.8 Sprint 8

Table C.9: Sprint 8: 25th of April - 8th of May

Backlog Item Sprint

Item

Description Hrs

est

O C J.Ø. J.R. K

Management 10 Meeting with the client 5 1 1 1

PoI 83 Added geocoding when adding new

pois

3 2

Report 61 Use Cases 16 5 11

Report 85 Added testing section 2 2

Plan 91 Implementing sharing of PoIs 16 8 8

Plan 87 Remaking category filter 10 5 4

Tour 78 Making a new tour from an existing

tour: S2.6

5 3

Tour 86 Implementing calendar view: S1.6 8 8

Design 77 Redesign tab buttons: S1.1 3 4

Design 89 Xml layouts and bitmaps 10 6 2

Database 88 Update database diagram with new

fields and primary keys

6 2 3

Other 92 Browsing and downloading PoIs 16 8 8

Other 93 Browsing and downloading tours 16 8 8

Other 75 Bugfixing 10 4

Maintenance 94 Fixing Javadoc 8 5 4

Maintenance 84 Code revert and bugfixing 24 16 8

Maintenance 90 Implementing changes recommended

by the client

16 5 9 5

Total 174 0 66 32 0 66

C.2. SPRINTS 111

C.2.9 Last call

Table C.10: Last call: 9th of May - 15th of May

Backlog Item Sprint

Item

Description Hrs

est

O C J.Ø. J.R. K

Management 10 Meeting with the client 5 1 1 1

Management 21 Meeting with the supervisor 5 1 1 1 1

Report 85 Writing testing section 2 2

Report 95 Finalization of the report 200 20 50 50 50

Other 75 Bugfixing 10 4

Other 93 Browsing and downloading tours 24 8 8 8

Plan 91 Implementing sharing of PoIs 16 8 8

Maintenance 94 Fixing Javadoc 8 5 4

Total 270 21 68 69 0 74

112 APPENDIX C. BACKLOG

Appendix D

User Manual

This manual goes through the different uses of the City Explorer.

D.1 Exploring

This part of the User Manual involves the users ability to explore a city

of previously unknown pubs, shops and other sights to see, using the City

Explorer on Android.

Figure D.1: The opening screen(left) and the Locations screen(right)

113

114 APPENDIX D. USER MANUAL

The screen to the left in figure D.1 is the main screen that is shown when

you run the City Explorer. As you can see there are two buttons:”Plan” and

”Explore”. Starting off we will delve into the usage of the ”Plan” button,

and then explain the ”Explore” button in the end of this section.

Figure D.2: The location details screen(left) and the ”Show Map” but-

ton(right)

Viewing locations. This is the most basic part of the application; the

ability to view information about different locations in a city. The screen

you see to the right in figure D.1 is the screen that appears when you pressed

the ”Plan” button in the opening screen. As you can see this is a list with

names of different locations in the city, seperated by the categories to which

they belong. If you press one of the entries, detailed information about that

location will appear, as seen on the screen on the left in figure D.2.

Pressing the web page on the details screen will open the web browser with

the corresponding url address. Pressing the telephone number will activate

the call function and the number will be called with your android phone. As

seen on the screen to the left in figure D.2, more options will be available if

you press the menu button on your phone. In this image the ”Map Button”

is highlighted, pressing this button will show you a map with the address of

this location shown, as seen on the left screen in figure D.3. On the screen

D.1. EXPLORING 115

beside you have what is shown if you press the ”Get Directions” button,

which will give you directions on how to get to the location.

Figure D.3: The map view(left) and the directions to a location(right)

The ”Star” button on the menu to the right in figure D.2, can be pressed

if you want to add this location to your own personal list of favourites.

Viewing tours. This part allows you to view different tours around the

city. A tour is basically just a collection of locations, often suited to a set of

interests(e.g. a Pub-tour or a Shopping-tour).

116 APPENDIX D. USER MANUAL

Figure D.4: The tour list(left) and the list of locations in a tour(right)

To get to the list of tours you simply press the tab marked in to the

left in figure D.4. Here you see a list over different tours, separated by 3

categories: ”Fixed Tours”, ”Free Tours” and ”Empty Tours”. The main

difference between a fixed and a free tour is that a fixed tour is set to a time-

schedule while a free tour is not planned to be taken at any specific time

during the day. An empty tour is of course a tour that contains no locations.

The screen to the right on figure D.4 is the list you view when you press one

of the tours in the previous list.

If you look at figure D.5 you can see the left screen shows the menu, with

the button for showing timetable for this fixed tour highlighted. The screen

to the left is the timetable that appears when you press that button. In the

timetable you have the locations from the tour lined up at the time you are

supposed to visit them, aswell as the time to walk between them. If you

press the locations you will get to the detail screen, if you press the walking

distanses you will get the walking directions.

D.1. EXPLORING 117

Figure D.5: The tour list(left) and the list of locations in a tour(right)

From the menu when you’ve entered a tour, you also have the possibility

to view all the locations on a map, by pressing the button as shown in

figure D.6, with directions between the locations, as shown to the right in

the same figure. The arrows on top of the screen can be used to cycle through

the locations.

118 APPENDIX D. USER MANUAL

Figure D.6: The button for opening map in a tour(left) and the corresponding

map with locations(right)

Filtering your locations. Now we jump back to the screen shown to

the right in figure D.1, to show how to suit the location list for yourself.

Figure D.7 displays, to the left, the button for opening the filter list, which is

displayed to the right. In this list you can check off the categories you would

like to have displayed in the location list, including the Favourite category.

Pressing the OK button will get you back to the location list, containing only

the categories corresponding to what you checked in the filter.

D.1. EXPLORING 119

Figure D.7: The button to open filtering(left) and the filtering list(right)

Figure D.8: The opening screen with(left) and the explore map(right)

The ”Explore” button. And now, as mentioned in the beginning of this

section, we will explain the function of the ”Explore” button in the opening

120 APPENDIX D. USER MANUAL

screen of the City Explorer. It is quite simply the button you would like to

press if you find yourself downtown and bored one day, and would like to

check out the sights and shops in your close vicinity. Figure D.8 shows, to

the right, the result you get when you press the ”Explore” button; a map

showing locations withing a 500 meters vicinity. You can press the individual

marks on the map to get to the details screen for the corresponding location.

D.2 Tailoring

This part of the User Manual involves the users ability to tailor their own

sights and experiences in a city, using the City Explorer on Android.

It covers the more advanced aspects: favorizing locations, creating new

locations, creating tours and adding/deleting locations from them aswell as

setting timetables for your tours.

Figure D.9: The ”New Location” button(left) and the location cre-

ation(right)

Creating locations. If you find yourself sitting in a beautiful cafe(for

example Edgars cafe in Studentersamfundet in Trondhjem) which, for some

reason, has not yet been added to the City Explorer, you might want to add

D.2. TAILORING 121

this to your list of locations. Figure D.9 shows how you would go about to

do this.

Figure D.10: The ”Choose location” button(left) and the location selec-

tion(right)

As you can see, the menu in the location list contains a ”New Location”

button, which brings you to the creation screen. On this screen you can

fill in the information regarding the location, and save it in your database.

Remember to assign your location to a suitable category, by using the drop-

down menu at the ”Category” field.

If the location you want to create differs only a little from a location you

already have, you would be smart to use the ”Choose location” button in the

creation screen, as displayed in figure D.10. Doing this will show you your

list of locations, as seen to the left in figure D.10, choosing one of them will

fill the information contained in that location into your creation fields.

122 APPENDIX D. USER MANUAL

Figure D.11: The ”New Tour” button(left) and creation screen(right)

Creating your own tour. You might find that none of the tours that

exist does not really suit yourself, or you might want to create a tour based

on your own experiences for someone else to enjoy. Figure D.11 shows you

how this would be done. To the left of the figure you can see the button for

opening the creation screen to the right. Fill inn the ”Name” field, choose

whether you wish a fixed or free tour, press save and voila you have created

a new tour.

D.2. TAILORING 123

Figure D.12: Button to add locations to a tour(left) selecting locations for

adding(right)

However, this tour you’ve just created is currently empty. How you go

about adding locations to your newly created emtpy tour you can see on

figure D.12. Starting off in the tour screen, you can longpress your tour to

get a menu of actions on that tour. To the left in figure D.12 you can see

this menu with the ”Add locations” button highlighted. The list to the right

then appears, containing all the locations; here you can mark which locations

to add(marked locations are highlighted in light blue) and add them to your

tour.

124 APPENDIX D. USER MANUAL

Figure D.13: Accessing timetable(left) and creating the timetable(right)

Setting a timetable for your tour. When inside the tour, you can access

the timetable, as shown to the left in figure D.13. To set times for each of

your locations, you have to touch the hour you want to set it to, and drag

your finger across the timetable to the correct minute, as shown to the right

in figure D.13. A list of the locations in your tour will appear and you must

add them to the timetable(you must put them into the table in the correct

order).

The City Explorer will calculate the time you need to walk between loca-

tions. The hour you need to leave a location to get to the next depends on

the walking distance and the time you’ve set for arriving at it.

D.2. TAILORING 125

Figure D.14: The ”Choose tour” button(left) and the tour selection(right)

Creating a new tour based on an old one. If you want to create a tour

based on another tour you can use the ”Choose tour” button in the creation

screen, as seen in figure D.14. The locations contained in the tour you choose

in the right screen in figure D.14 will be loaded into your new tour.

126 APPENDIX D. USER MANUAL

Figure D.15: How to delete locations from tours(left) and how to delete

tours(right)

Deleting locations from your newly created tour. The process of

removing locations from your tour is shown to the left in figure D.15, and

deleting tours from your phone’s memory is shown to the right.

D.3 Sharing & Updating

This part of the User Manual involves the users ability to share among

themselves the things they might enjoy to see in a city, using the City Ex-

plorer on Android.

We will go through how you go about sharing a location with friends,

updating locations from a server and updating tours from a server.

D.3. SHARING & UPDATING 127

Figure D.16: Opening the sharing of locations(left) and location selection for

sharing(right)

Sharing locations with a friend. The process of sharing locations with

a friend is shown in figure D.16. When in the locations screen, you press

the share button, as shown to the left in figure D.16, to access the list of

locations to the right. Select the locations you wish to share, open the menu

and press the share button.

128 APPENDIX D. USER MANUAL

Figure D.17: The list of ways to share locations(left) and list of devices

available for sharing(right)

This will prompt the list you can see to the left in figure D.17, where you

have several means of sending the location information to someone. However,

the recommended ways are bluetooth and email. The next screen shows a

list of devices you can send to, so select your friends android device and he

will receive it.

D.3. SHARING & UPDATING 129

Figure D.18: The list of ways to share locations(left) and list of devices

available for sharing(right)

Updating locations from server. If you have a look at figure D.18 you

can see that the process of updating the locations stored on your phone

with information stored on an online server is pretty strait forward. The

first screen shows the accessing via the locations menu, and the next screen

shows the selection of which locations to download from the server.

130 APPENDIX D. USER MANUAL

Figure D.19: Updating tours

Updating tours from server. This is the same process as when you

update locations from a server, only accessed through the tour menu, as

shown in figure D.19.

Appendix E

List of Figures

This appendix lists all of the figures seen in the report.

131

132 APPENDIX E. LIST OF FIGURES

List of Figures

2.1 Work breakdown structure . 17

2.2 Sprint workload overview . 21

2.3 Deviation . 21

3.1 Use Cases for requirements S1.1 — S1.8 28

3.2 Use Cases for requirements S2.1 — S2.71 29

3.3 Use Cases for requirements S3.1 — S3.5 30

4.1 Overall system architecture 47

4.2 User interface navigation flow chart 49

4.3 High level class diagram . 50

4.4 ER-diagram . 51

4.5 Sequence diagram: favorizing a PoI 52

4.6 Sequence diagram: creating a PoI 53

4.7 Sequence diagram: updating PoI List 54

4.8 Sequence diagram: sharing a PoI 55

5.1 Communication between activities 57

5.2 Class Diagram 1 . 65

5.3 Class Diagram 2 . 66

5.4 Class Diagram 3 . 67

5.5 Class Diagram 4 . 68

5.6 Class Diagram 5 . 69

D.1 The opening screen(left) and the Locations screen(right) . . . 113

D.2 The location details screen(left) and the ”Show Map” but-

ton(right) . 114

D.3 The map view(left) and the directions to a location(right) . . 115

D.4 The tour list(left) and the list of locations in a tour(right) . . 116

D.5 The tour list(left) and the list of locations in a tour(right) . . 117

133

134 LIST OF FIGURES

D.6 The button for opening map in a tour(left) and the corre-

sponding map with locations(right) 118

D.7 The button to open filtering(left) and the filtering list(right) . 119

D.8 The opening screen with(left) and the explore map(right) . . . 119

D.9 The ”New Location” button(left) and the location creation(right)120

D.10 The ”Choose location” button(left) and the location selec-

tion(right) . 121

D.11 The ”New Tour” button(left) and creation screen(right) 122

D.12 Button to add locations to a tour(left) selecting locations for

adding(right) . 123

D.13 Accessing timetable(left) and creating the timetable(right) . . 124

D.14 The ”Choose tour” button(left) and the tour selection(right) . 125

D.15 How to delete locations from tours(left) and how to delete

tours(right) . 126

D.16 Opening the sharing of locations(left) and location selection

for sharing(right) . 127

D.17 The list of ways to share locations(left) and list of devices

available for sharing(right) . 128

D.18 The list of ways to share locations(left) and list of devices

available for sharing(right) . 129

D.19 Updating tours . 130

Appendix F

List of Tables

This appendix lists all of the tables seen in the report.

135

136 APPENDIX F. LIST OF TABLES

List of Tables

2.1 Risk assessment . 16

2.2 Work distribution percentage 23

3.1 Basis requirements . 26

3.2 Tailoring requirements . 26

3.3 Sharing requirements . 27

3.4 City Explorer use case 1 . 30

3.5 City Explorer use case 2 . 31

3.6 City Explorer use case 3 . 31

3.7 City Explorer use case 4 . 32

3.8 City Explorer use case 5 . 32

3.9 City Explorer use case 6 . 33

3.10 City Explorer use case 7 . 33

3.11 City Explorer use case 8 . 33

3.12 City Explorer use case 9 . 34

3.13 City Explorer use case 10 . 34

3.14 City Explorer use case 11 . 34

3.15 City Explorer use case 12 . 35

3.16 City Explorer use case 13 . 35

3.17 City Explorer use case 14 . 36

3.18 City Explorer use case 15 . 36

3.19 City Explorer use case 16 . 37

3.20 City Explorer use case 17 . 37

3.21 City Explorer use case 18 . 38

3.22 Non-functional requirements 40

3.23 Basis requirements . 43

3.24 Tailoring requirements . 44

3.25 Sharing requirements . 45

6.1 City Explorer test case 1 . 73

137

138 LIST OF TABLES

6.2 City Explorer test case 2 . 73

6.3 City Explorer test case 3 . 73

6.4 City Explorer test case 4 . 73

6.5 City Explorer test case 5 . 74

6.6 City Explorer test case 6 . 74

6.7 City Explorer test case 7 . 74

6.8 City Explorer test case 8 . 74

6.9 City Explorer test case 9 . 75

6.10 City Explorer test case 10 . 75

6.11 City Explorer test case 11 . 75

6.12 City Explorer test case 12 . 75

6.13 City Explorer test case 13 . 75

6.14 City Explorer test case 14 . 76

6.15 City Explorer test case 15 . 76

6.16 City Explorer test case 16 . 76

6.17 City Explorer test case 17 . 76

6.18 City Explorer test case 18 . 76

A.1 Our meetings . 82

C.1 Project backlog . 102

C.2 Sprint 1: 31st of January - 6th of February 103

C.3 Sprint 2: 7th of February - 13th of February 104

C.4 Sprint 3: 14th of February - 20th of February 105

C.5 Sprint 4: 21st of February - 27th of February 106

C.6 Sprint 5: 28th of February - 13th of March 107

C.7 Sprint 6: 14th of March - 27th of March 108

C.8 Sprint 7: 28th of March - 10th of April 109

C.9 Sprint 8: 25th of April - 8th of May 110

C.10 Last call: 9th of May - 15th of May 111

Glossary

Activity From the Android reference: An activity is a single, focused thing

that the user can do. (...) In other words, it is a component of the

application responsible for exposing functionality and for processing

user input. 58

API Application Programming Interface. 39

Extreme Programming Extreme Programming is a software development

methodology. See reference [8]. 13

GUI Grapical user interface. The interface shown to the user that enables

the user to interact with and be informed by the program. 48, 50, 52

http Hypertext Transfer Protocol. HTTP is the foundation of data commu-

nication for the World Wide Web. http://en.wikipedia.org/wiki/

HTTP. 70

IDE Integrated Development Environment. 14

php PHP is a general-purpose scripting language originally designed for web

development to produce dynamic web pages. http://www.php.net. 70

PoI Point of interest is a location with attached information. 8, 48, 52, 58

SCRUM SCRUM is an iterative, incremental framework for project man-

agement. See reference [7]. 13, 101

SDK Software Development Kit. 14

SQlite SQlite is an embedded relational database management system. http:

//www.sqlite.org. 70

tour A tour is a set of one or more PoIs. 7, 25–27, 43–45, 48, 51, 58, 89, 90

VM Virtual Machine. 14

139

http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/HTTP
http://www.php.net
http://www.sqlite.org
http://www.sqlite.org

140 Glossary

Bibliography

[1] “Google inc. android developers reference.” http://developer.

android.com/reference/packages.html. [Accessed 27-February-

2011].

[2] J. Floch, “A framework for tailored city exploration.” Paper to be pub-

lished in the proceedings of Third International Symposium on End-User

Development (IS EUD)., 2011.

[3] “Ubicompforall. ubiquitous service composition for all users.” http://

ubicompforall.org. [Accessed 13-May-2011].

[4] “Wikipedia. java (programming language).” http://en.wikipedia.

org/wiki/Java_(programming_language). [Accessed 14-May-2011].

[5] “Sintef itc.” http://www.sintef.no/. [Accessed 27-February-2011].

[6] G. M. Marakas, SYSTEMS ANALYSIS & DESIGN an active approach.

McGraw-Hill, 2 ed., 2006. [international edition].

[7] “Scrumalliance - an innovative approach to getting work done.” [Ac-

cessed 14-May-2011].

[8] “A gentle introduction to extreme programming.” http://www.

extremeprogramming.org/. [Accessed 27-February-2011].

[9] “Wikipedia. apache subversion.” http://en.wikipedia.org/wiki/

Apache_Subversion. [Accessed 14-May-2011].

[10] “Sqlite.” http://www.sqlite.org/index.html. [Accessed 13-Mars-

2011].

[11] “Facebook.” http://facebook.com (Log in required). [Accessed 13-

May-2011].

141

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://ubicompforall.org
http://ubicompforall.org
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://www.sintef.no/
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
http://en.wikipedia.org/wiki/Apache_Subversion
http://en.wikipedia.org/wiki/Apache_Subversion
http://www.sqlite.org/index.html
http://facebook.com

142 BIBLIOGRAPHY

[12] “git - the fast version control system.” http://git-scm.com/. [Accessed

6-April-2011].

[13] “Wikipedia. work breakdown structure.” http://en.wikipedia.org/

wiki/Work_breakdown_structure. [Accessed 7-April-2011].

[14] M. Fowler, UML Distilled - A Brief Guide to the Standard Object Mod-

elling Language. Addison-Wesley Educational Publishers Inc, 3 ed.,

2003.

[15] “Google inc. pie chart showing distribution of active android os version

on the android market in february 2011.” http://developer.android.

com/resources/dashboard/platform-versions.html. [Accessed 13-

March-2011].

[16] “Google i/o 2010 - android ui design patterns.” [Accessed 7-March-2011].

[17] J. G. Raghu Ramakrishnan, Database Management Systems. McGraw-

Hill, 3 ed., 2002.

[18] “Wikipedia. bluetooth technology reference.” http://en.wikipedia.

org/wiki/Bluetooth. [Accessed 12-May-2011].

[19] “Ancal.” http://code.google.com/p/ancal/. [Accessed 14-May-

2011].

[20] “Wikipedia. comma-separated values.” http://en.wikipedia.org/

wiki/Comma-separated_values. [Accessed 13-May-2011].

[21] “W3schools. introduction to xml.” http://www.w3schools.com/xml/

xml_whatis.asp. [Accessed 14-May-2011].

[22] G. Paller, “Plug-in.” http://www.mylifewithandroid.blogspot.com/

2010/06/plugins.html. [Accessed 11-May-2011].

[23] “Wikipedia. international system of units.” http://en.wikipedia.

org/wiki/International_System_of_Units. [Accessed 13-May-2011].

http://git-scm.com/
http://en.wikipedia.org/wiki/Work_breakdown_structure
http://en.wikipedia.org/wiki/Work_breakdown_structure
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Bluetooth
http://code.google.com/p/ancal/
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values
http://www.w3schools.com/xml/xml_whatis.asp
http://www.w3schools.com/xml/xml_whatis.asp
http://www.mylifewithandroid.blogspot.com/2010/06/plugins.html
http://www.mylifewithandroid.blogspot.com/2010/06/plugins.html
http://en.wikipedia.org/wiki/International_System_of_Units
http://en.wikipedia.org/wiki/International_System_of_Units

	Introduction
	Product description

	Project Management
	Pre-studies
	Alternative Solutions

	Project Schedule
	Phases
	Milestones

	Stakeholders
	The Client
	Team Organization

	Development model
	Borrowed elements

	Development environment
	Risk Analysis
	WBS
	Work process reflections
	Work distribution

	Requirements specification
	Functional requirements
	Use case diagrams
	Basis city exploration
	Tailoring
	Sharing

	Textual Use Cases
	Non-functional requirements
	Requirements History

	System Architecture
	Overall Architecture
	Architecture design
	Architecture classes
	Architecture database
	Architecture sequence diagrams

	Implementation
	Packages
	Implementation design
	User interface
	Quick Actions
	Activities
	Implementation Classes
	Implementation Database

	Implemented default Android components

	Testing
	Client testing
	Scenarios
	Test Cases

	Follow-up Work
	Back end system
	Web Portal
	Sharing of Tours
	Advanced Rating System
	Social Media Pages
	Plug-in System
	Support for non-SI units
	Translation
	Integration with UbiCompForAll composition tool

	Meetings
	With Group
	20. Jan. 2011
	6. Jan. 2011
	11. March. 2011

	With Client
	24. Jan. 2011
	31. Jan. 2011
	7. Feb. 2011.
	14. Feb. 2011
	28. Feb. 2011

	With Supervisor
	24. Jan. 2011
	7. Feb. 2011

	Status Reports
	Status report: sprints 1 and 2
	Status report: sprints 3 and 4
	Status report: sprint 5
	Status report: sprint 6
	Status report: sprint 7
	Status report: sprint 8
	Status report: last call

	Backlog
	Project backlog
	Sprints
	Sprint 1
	Sprint 2
	Sprint 3
	Sprint 4
	Sprint 5
	Sprint 6
	Sprint 7
	Sprint 8
	Last call

	User Manual
	Exploring
	Tailoring
	Sharing & Updating

	List of Figures
	List of Tables
	Glossary
	Bibliography

