

part of Aker

'Zero Emission Power Production for LNG Regasification' "A concept for new environmental friendly regasication technology"

Suthan Vivekananthan MEng CEng MIChemE (UK) Senior Process Engineer – System Design Dept.

Presented at the 2nd Trondheim Gas Technology Conference 3rd November 2011

© 2011 Aker Solutions

CONTENTS

- 1. Introduction to Aker Solutions & BAs
- 2. Study Background
- 3. Reference Case
- 4. Study Results
- 5. Future work

Aker Solutions Operating businesses

Engineering solutions

Engineering

Product solutions

Subsea

Drilling Technologies Well Intervention Services

Oilfield Services & Marine Assets

Mooring & Loading Systems

Process Systems

Field life solutions

Maintenance, Modifications & Operations

part of Aker

Business Management

Corporate structure

Slide 4

© 2011 Aker Solutions

Zero emission Power Production for LNG Regasification

CONTENTS

- 1. Introduction to Aker Solutions & BAs
- 2. Study Background:
 - Introduction
 - Study Motivation
 - Study aims
- 3. Reference Case:
 - Comparision with Adriatic LNG Terminal
- 4. Study Results:
 - Equipment design
 - Technology status
 - Layout design
 - Weight / Cost estimates
- 5. Future work

Slide 6

Zero emission Power Production for LNG Regasification

Open

Study Background: Introduction

 LNG Regasification Process turns the cold LNG into Natural Gas so that it can be given to the End User.

- Traditionally 2 different methods are used for LNG Regasification:
 - Submerged Combustion Vaporisers (SCVs) using a burner as the heat source
 - Open Rack Vaporisers (ORVs) using sea water as the heat source
- But both methods have a negative impact on the environment:
 - SCVs: Emission of flue gases containing NO_x , CO, CO₂
 - ORVs: Discharge of large volumes of seawater containing hypochlorite and at up to 10°C colder than the seawater intake temperature

Study Motivation (External)

- Global warming due to increase in human emissions of CO₂ require new environmentally friendly products
- Kyoto agreement
- EU 2020 Goal
- There is an existing and growing market on offshore and onshore LNG Regas terminals
- There are restrictions on planning and building of LNG Regas terminals due to environmental regulations
- Upcoming new technology for environmentally friendly large scale energy production:
 - Post-combustion (ACC) Available technology
 - Pre-combustion Future Technology
 - > Oxyfuel Emerging Technology

part of Aker

Study Motivation (Internal)

- Aker Solutions controls the entire CO₂ value chain
 - > Aker Clean Carbon (ACC) owns technology on CO_2 capture
 - \succ CO₂ from NG
 - > CO_2 injection (Subsea/platform)
- Aker Solutions has built two-third of world's offshore GBS structures
 - > This Regas terminal is assumed to be built on GBS
- Experience on major onshore LNG regasification terminals

Study Aims

- Design a NEW environmental friendly LNG Regas terminal that does not produce any emission or effluents
 - Power generation with CO2 separation (minimal harmful emissions)
 - No discharges to sea

 This new technology will be a real competitor to the traditional LNG Regas market, in the areas where <u>stricter</u> <u>environmental restrictions</u> are enforced.

CONTENTS

- Introduction to Aker Solutions & BAs 1
- Study Background: 2.
 - Introduction
 - **Study Motivation**
 - Study aims
- Reference Case: 3
 - Comparision with Adriatic LNG Terminal
 - **Base Case Process**
- Study Results: 4.
 - Equipment design н.
 - Technology status
 - Layout design .
 - Weight / Cost estimates
- Future work 5.

Slide 11

© 2011 Aker Solutions

Open

Adriatic LNG Terminal Overview

Design

Gravity-base structure (GBS) designed by Aker Solutions

Technical Features

- The structure is 180 m x 88 m
- LNG Regas process using four ORVs (seawater) + one SCV (waste heater boiler)
- Located 15 km off the east coast of Italy.
- Placed on the seabed in a water depth of approximately 30 metres.
- Pipes which transport gas to land

Adriatic LNG Regas Process

- 25 million Sm³/day of sales gas
 - Equals 8 billion Sm³/year 5.9 MTPY
- Other existing Regas terminals are:

*MTPY = Million Tonnes Per Year

Slide 12

© 2011 Aker Solutions

Overall Block Flow Diagram - Base Case

Design Features

New LNG Regas Process Systems:

- Air Separation Unit
- Oxygen Fired Burner (Oxyfuel)
- Onboard Steam & Power System
- \succ CO₂ Removal System
- \succ CO₂ Compression / Export

Regas Facility Features:

Utilises the heat integration between the LNG gasification process and the power generation and CO₂ separation process Produce Oxygen Clean combustion Power plant Flue gas (CO₂ / Water) CO₂ for EOR/Injection

Open

CONTENTS

- 1. Introduction to Aker Solutions & BAs
- 2. Study Background:
 - Introduction
 - Study Motivation
 - Study aims
- 3. Reference Case:
- 4. Study Results:
 - Equipment design
 - Technology status
 - Layout design
 - Weight / Cost estimates
- 5. Future work

Equipment Design: LNG Regas Process

Equipment Design: Air Separation Unit

© 2011 Aker Solutions

Equipment Design: Steam & Power System

Process Technology Status

Process System	Status	Required work	
Air Separation Unit	Existing Technology for onshore plats	Qualification for offshore use	
Oxygen Fired Burner (Oxyfuel)	Semi commercial. Small scale pilot plants NG 30MW exists. Ref. to Statoil Kårstø, BIGCCS	Technology development for larger scale. Technology Qualification required.	
Steam Generation System	Existing Technology	Boiler vendor and Oxyfuel Burner vendor liaising with each other to develop the steam generation technology	
Power Generation system	Steam Generator Technology Exists	None	
Cryogenic CO ₂ Liquefaction System	Known Technology Elements New Application Ref. to Statoil Kårstø, BIGCCS	Application and System Integration needs to be Qualified	
Heat Integration System	Some heat exchanger equipment NOT off the shelf available	Equipment and System Integration needs to be Qualified	
Utilities and off sites	Existing Technology	None	

Overall system need: Identification and verification of the plant operation and flexibility.

AkerSolutions[®]

Layout Design

Basis for layout:

- GBS dimensions based on Adriatic (180m long x 88m wide)
- > 2 x LNG storage tanks of 125,000m³ / tank
- Equipment list developed by process

Layout philosophy:

- Topsides design to be inherently safe with segregation of hazardous and non hazardous system
- LQ and utility areas located upwind of process facilities
- Fire / blast wall provided between process and utility areas
- Topsides modules split into system packages to reduce interface and hook-up and allow parallel fabrication activities

Layout Design

Iso view of Regas Topsides

Zero emission Power Production for LNG Regasification

© 2011 Aker Solutions

Weight/Cost Estimate:

	Weight	Cost	Cost
Cases	Tonnes	2010 NOK	NOK/kg
Base Case	26 607	15 000	564
Reference Case	19 000	11 000	580

- Reference Case is As-Built figures for a comparable Regasification facility, scaled to 2010 price-level figures.
- The above figures exclude the cost of GBS:
 - The GBS size for the Base Case is same as for Reference case hence GBS costs are excluded for comparision

Evaluation Summary :

The cost of new Regasification terminal (with CO₂ separation) is <u>comparable</u> with the existing Regas terminals without CO₂ capture.

CONTENTS

- 1. Introduction to Aker Solutions & BAs
- 2. Study Background:
 - Introduction
 - Study Motivation
 - Study aims
- 3. Reference Case:
- 4. Study Results:
 - Equipment design
 - Technology status
 - Layout design
 - Weight / Cost estimates
- 5. Future Work

Slide 24

Open

Future Work

- Further development of the Patented Regas Technology
 - Assistance with technology maturity
 - To feasibility stage with operational, functional description and safety
 - Detailed benchmarking against Adriatic
- Identify marketing challenges for the New Regas Technology
 - Identify potential partners for joint-development / Govt. bodies for funding the following tasks:
 - Technology Verification
 - Pilot Test Programs
 - FEED
 - Develop Technology Qualification Plan with partners
 - Involve potential test sites in further planning
- Identify relevant proposed projects for the New Regas Terminal
 - Possible Locations / prospects

THANK YOU !

ANY QUESTIONS?

Contact details: Suthan.Vivekananthan@akersolutions.com

Ingjerd.Aas-Jakobsen@akersolutions.com

Zero emission Power Production for LNG Regasification

Slide 26

© 2011 Aker Solutions

Copyright

Copyright of all published material including photographs, drawings and images in this document remains vested in Aker Solutions and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without express prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.

Zero emission Power Production for LNG Regasification

© 2011 Aker Solutions