

Water content of high pressure natural gas Data, prediction and experience from field

Kjersti Omdahl Christensen, Torbjørn Vegard Løkken, Even Solbraa, Cecilie Fjeld Nygaard, Anita Bersås

Classification: Open 011-08-04

Outline

Background

Field experience

Phase behaviour

Experimental work

Thermodynamic model

Summary

Background

- Natural gas contains water in varying amounts dependent on upstream conditions
- Water in natural gas can create problems during transportation and processing
 - Gas hydrates
 - Ice formation
 - Increase corrosion potential
- Understanding of the phase behaviour of natural gas and it trace components is crucial for safe and efficient gas processing

Field experience

- Water spec: -18 °C @ 69 barg
- Moderate dew point depression
- Triethylene glycol (TEG) used as water absorber
- Gas from TEG contactor contains TEG (g)

Onshore process

- Cold processes
- Freezing of hydrocarbon/glycol/water solutions
- Hydrate formation in hydrocarbon/glycol/water solutions

Phase behaviour of natural gas with traces of water and TEG

CPA-EoS

 $Z = \frac{V_m}{V_m - b} - \frac{a(T)}{RT(V_m + b)} - \frac{1}{2} \left(1 + \rho \frac{\partial \ln g}{\partial \rho}\right) \sum_i x_i \sum_{A_i} (1 - X_{A_i})$

Classic contribution (SRK) Contribution from hydrogen bonding (association and solvation) CPA: Cubic plus association EoS: equation of state SRK: Soave-Redlich-Kwong

CPA-EoS is developed by CERE / DTU

Experimental set-up

c: Condenser

D: Pressure transmitter

Results

350

300

250

200

150

100

50

0

-20

Water content [ppm (mol)]

Data for the equilibrium water content in methane and a natural is available in the temperature range -20 to 20°C and pressures up to 150 bar

0

5

10

15

-5

20

-15

Measurement (Karl Fischer)

-10

CPA-EoS hydrate

CPA-EoS water

CPA-EoS ice

Summary

- Knowledge of phase behaviour of natural gas an its trace components is crucial for a safe and efficient production.
- ✓ CPA-EoS combined with thermodynamic models for the ice and gas hydrate phases gives excellent results for calculation of:
 - Equilibrium water content of natural gas
 - Water dew point temperature
 - Natural gas hydrate temperature
 - Ice precipitation temperature
 - Aqueous dew points

Thank you

Water content of high pressure natural gas Kjersti O. Christensen Researcher kchr@statoil.com, +47 99 48 76 84 www.statoil.com

