

2nd Trondheim Gas Technology Conference 2-3 November 2011

Scale-up of microchannel reactors for small scale GTL processes

Rune Myrstad

Department of Process Chemistry SINTEF Material and Chemistry Trondheim, Norway

- Microstructured reactors in compact conversion of natural gas and biomass to liquid fuels and hydrogen, Hilde Venvik, NTNU
- Fischer-Tropsch synthesis in a microstructured reactor, Rune Myrstad, SINTEF

Since then..

Microchannel reactor demo units:

- Velocys / Oxford Catalysts
 - 2010: SGC Energia, Güssing, Austria, <1 bpd BTL
 - 2011: Petrobras, Fortaleza, Brazil, 6 bpd GTL
 - 2012: SGC Energia, Brazil, 50 bpd BTL
- CompactGTL
 - 2010: Petrobras, Aracaju, Brazil, 20 bpd GTL

Background and motivation

- 1. ~25% of natural gas reserves are "stranded" (Associated gas, Arctic gas, Remote gas)
 - Long distance to market
 - Volume too low for pipeline
 - Complicated production

2. Biomass-to-liquid challenge

- Distributed
- Safe
- Efficient

4

Requirements - Stranded gas/BTL conversion process

- Direct (one step) process
- Compact
- Economic in small-medium scale
- Safe (off-shore, farmland localization etc.)
- Reactor design for proper heat exchange
- Small/medium scale conversion

Could small scale GTL become feasible?

- Commercial GTL 15.000 140.000 bpd
- Stranded GTL 1.000 2.000 bpd
- BTL 500 2.000 bpd

 \Rightarrow Microchannel reactors ?

6

Microchannel reactors

Large number of small, parallel channels in μm range

- Short distance to wall
- High surface/volume ratio
- Enhanced heat and mass transfer properties
- ⇒ Especially suited to economical production on a small scale

7

Microchannel reactor for GTL application

- Lab scale 2 cm³ reactor, 8 catalyst filled foil structures with crossflow oil heating channels.
- Characterized and performance verified for F-T, MeOH and DMEsynthesis:

• By experiments and modeling demonstrated an isothermal and isobaric reaction environment, free of mass and heat transfer limitations

Scale-up strategy: Methanol synthesis

- Reactor productivity obtained for 2 cm³ lab scale reactor by lab experiments and modelling
- Reactor mass and MeOH productivity calculated for a 630 x scale-up to a 17x17x24 cm unit (identical channel geometry)
- Adding up units to 1000 bpd total capacity

 Compared with data for 5000 bpd commercial methanol plant

Comparison, basis

Parameter	Conventional Reactor	Microchannel Reactor	
Production Capacity, TPD	5000	1000	
Pressure, bar	77	80	
Temperature, °C	255 (bed exit)	255 (isothermal)	
Feed gas	Conventional feed	$H_2/CO/CO_2/N_2$ (65/25/5/5 mol%)	
Catalyst	Commercial Cu/Zn/Al		
Catalyst particles, mm	5,5	0,08	
Recycle ratio	4,7	No recycle	
CO Conversion	19 %	63 % (single pass)	
Carbon efficiency	82 %	49 %	
Kinetics	Bussche & Froment, 1996		

90 tons of catalyst 340 tons of steel

15 tons of catalyst 490 tons of steel

Productivity comparison

Ratio A: Kg of methanol produced per hour <u>per mass of steel</u> Ratio B : Kg of methanol produced per hour <u>per mass of catalyst</u>

Parameter	Commercial reactor	Microchannel reactor
Capacity, TPD	5000	1000
Ratio A	0,61	0,085
Ratio B	1,01	2,83

Conclusion, I

1. 2-3 x higher catalyst productivity in microchannel reactor

But, since

- 490 tons steel applied in 1000 bpd microchannel reactor vs. 340 tons steel in 5000 tpd large scale reactor
 - ⇒ Dramatically lower productivity /kg steel in microchannel reactor

However, ..

Parameter	Commercial reactor	Microchannel reactor	
Capacity, TPD	5000	1000	
Ratio A	0,61	0,085	
Ratio B	1,01	2,83	

Approaches to improving the productivity, I

- 3-4 x higher catalyst activity reported in literature
- Interstage condensation of Methanol and Water could increase the productivity up to 20% through shifting the equilibrium
 - 1. $CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O$
 - 2. $CO + 2H_2 \leftrightarrow CH_3OH$
 - 3. $CO + H_2O \leftrightarrow H_2 + CO_2$
- Temperature profiling
 - (High T High activity, low equil. conv.
 - Low T Low activity, high equil. conv.)

→ Increased catalyst productivity
⇒ Increased reactor productivity

Approaches to improving the productivity, II

- Conversion of MeOH to DME
- Alleviation of the equilibrium methanol limitation!

100 (a) 80 CO conversion, [%] 60 Microreactor A Microreactor B Microreactor C x_{CO.ea} (DME) 40 x_{CO,eq} (MeOH) 20 0 200 220 240 260 280 300 320 340 Temperature, [°C]

 $CO + 2 H_2 \leftrightarrow CH_3OH$ $2 CH_3OH \leftrightarrow CH_3OCH_3 + H_2O$

Approaches to improving the productivity, III

- Optimization of the microchannel structure and hence decreasing mass of steel
 - $\begin{array}{l} \Rightarrow \text{ Decreased mass of steel} \\ \Rightarrow \text{ Increased reactor productivity} \end{array}$

Conclusion, II

- Promising aspects of an microchannel reactor application in small to medium scale gas conversion are demonstrated
- Robust scale-up
- Elimination of product recycle
- Still, approaches to further minimize the reactor body mass are required.

Thank you for your attention!

Acknowledgements

- Dr. Hamidreza Bakhtiary-Davijany and Dr. Fatemeh Hayer
- Professor Hilde Venvik and Professor Anders Holmen
- Dr. Peter Pfeifer and Dr. Roland Dittmeyer

