Ramona Infrastructure A multi horizon stochastic programming investment model

Kjetil Midthun, Lars Hellemo, Marte Fodstad, Adela Pages, Gerardo A. Perez-Valdes, Asgeir Tomasgard, Adrian Werner

> 2nd Trondheim Gas Technology Conference Trondheim, 3. November 2011

Background

- World's largest subsea gas transport system,7800 km
- Liberalized markets
- Ageing infrastructure
- Gas quality issues
- System effects

Investments and system effects

- The capacity in the initial system is 51.3 MSm³/d
- We want to extend the system with a new field and a new market (B&D)
- Two possible connection points: CP1 & CP2
 - With CP1 the capacity between A&C is: 47.5 MSm³/d
 - While with CP2 the capacity between A&C is: 44.1 MSm³/d

Uncertainty & Operational variability

- A common approach is to replace uncertain parameters by mean value
- Such deterministic models fail to account for deviating values and don't produce robust solutions
- Common to **aggregate** data for strategic analysis
- Aggregation may hide
 important detail
- Analogous to deterministic vs. stochastic
- Performance in peak load situations or low load situations may be important

Example design & operation

- Stochastic daily demand
- Project Blue: designed for expected value
- When will Black be better than Blue?
 - Depends on probabilities and outcomes of scenarios!

Framework

- Optimization
- Stochastic programming
- MILP
- Commercial solver+modeling environment (XpressMP/Mosel)

- Build on experience from previous models
 - Deterministic strategic model
 - Deterministic operational model
 - Stochastic tactical model
 - Stochastic operational model
- Challenge: find a sufficient level of detail

Mathematical formulation

- Maximize expected net present value
 - Market price * volume sold
 - Less Investment costs
 - Less Operational costs
- Such that security of supply / production assurance is kept at a high level

• Subject to:

- Production limits
- Market demand
- Mass balance
- Flow/pressure relationship
- Investment enables capacity
- Mutually exclusive projects

– Etc...

A two-stage scenario tree

Computational results

- The case we have run so far has a realistic number of investment possibilities
 - But a relatively short time horizon (15 years),
 - And a small scenario tree
 - Two stages
 - 9 scenarios
- To solve large scale cases / problems we are working on solution algorithms
 - Divide the large problem into sub problems and utilize parallelization techniques

Case	#rows	#cols	#integer	Solution time
Deterministic	37 045	15 236	9 724	7s
Stochastic	233 549	95 428	61 860	126s

g

Conclusions

- The analysis tool handles
 - Investment analysis (fields, branch-offs, compressors, etc)
 - System effects
 - Gas quality
 - Operational decisions and the influence on design
 - Uncertainty
 - Short-term (prices, demand, events)
 - Long-term (prices, demand, gas quality, reservoir volumes, new discoveries, etc)
- Status for the model
 - Implemented the model presented here 2 years ago
 - Solved the first realistic scale problem instances
 - Discussing implementation for production

