

UiO **Department of Chemistry** University of Oslo

Partial oxidation of methane to synthesis gas over Rh - promoted perovskites

R. Palcheva, M. Palcut, G. Zeng, U. Olsbye, H. Fjellvåg

1. Background and motivation

Methane \longrightarrow Syngas (CO+H₂) \longrightarrow Methanol

Partial oxidation of methane to syngas:

Reaction concept

$$\begin{array}{ll} \mathsf{CH}_4 + \mathsf{MO}_x & \rightarrow \mathsf{CO} + 2\mathsf{H}_2 + \mathsf{MO}_{x-1} \\ \mathsf{MO}_{x-1} + 0.5\mathsf{O}_2 \rightarrow \mathsf{MO}_x \end{array}$$

Possible by-product formation:

 $\begin{array}{ll} \mathsf{CH}_4 + 2\mathsf{MO}_{\mathsf{x}} & \rightarrow \mathsf{CO}_2 + 2\mathsf{H}_2\mathsf{O} + 2\mathsf{MO}_{\mathsf{x}\text{-}1} \\ \mathsf{CH}_4 & \rightarrow \mathsf{C} + 2\mathsf{H}_2 \end{array}$

A-site doping with two-valent cations (Sr²⁺) to <u>create</u> oxygen vacancies (δ)

Rh is added to enhance catalytic properties

3. X-ray diffraction studies

Trondheim 03 November 2011

3. X-ray diffraction studies

Rietveld refinement

Lattice parameters

Sample	а	С
Ga-0.10	5.51042	13.39237
Ga-0.25	5.51043	13.43354
Ga-0.40	5.51299	13.43367
Ga-0.60	5.51494	13.36060

Lattice parameters <u>increase</u> with gallium concentration since Ga^{3+} has a larger ionic radius compared to Co^{3+} and Fe^{3+}

Experimental Setup

Transient Catalytic Test (CH₄/O₂)

CH₄ conversion % = 100x ($p(CH_4)_{in} - p(CH_4)_{out}$) / $p(CH_4)_{in}$ CO selectivity % = 100x $p(CO)_{out}$ / $p(CO)_{out} + p(CO_2)_{out}$

Methane conversion of Rh promoted perovskites at 873K

Trondheim 03 November 2011

CO selectivity of Rh promoted perovskites at 873K

Trondheim 03 November 2011

UiO **Content of Chemistry** XPS of Ga modified perovskites

UiO **Department of Chemistry** HRTEM of Rh promoted perovskite oxides

Trondheim 03 November 2011

UiO **Conclusions**

- The synthesized samples were single perovskite phase materials, with a small amount of secondary LaSrGa₃O₇ phase in sample with 60 % gallium only.
- The catalytic tests of Rh promoted perovskites show that the total CO production decreases with the addition of Ga. The increase in CH₄ conversion with Ga addition is due to the steep increase in carbon deposit production. This can be related to the lower oxidation state reached by Co.
- The catalytic tests showed that Rh promoted Ga modified perovskites catalysts exhibit a more rapid deactivation with increasing amount of gallium. The deactivation of the catalysts involves both carbon deposits and less reduction of the active phase.
- X-ray photoelectron spectroscopy and Transmission electron microscopy studies have been performed on the surface of the Rh promoted perovskites. The Rh₂O₃ thin overlayer causes the surface to be enriched in Rh. Introduction of Ga into perovskites structure changes the Co/Fe ratio on the surface.

Acknowledgements

This presentation is part of the Remote Gas project (168223/S30), performed under the strategic program Petromaks of The Research Council of Norway

Prof. Unni Olsbye Prof. Helmer Fjellvåg

UiO Senter for materialvitenskap og nanoteknologi

Det matematisk-naturvitenskapelige fakultet

Thank you for your attention