Innovation and Creativity

Numerical Investigation of the Sorption Enhanced Steam Methane Reforming in a Fluidized Bed Reactor

Financed through GASSMAKS program and PAFFrx project of the Norwegian Research Council

Z. Chao, Y. Wang, J.P. Jakobsen, M. Fernandino, H.A. Jakobsen

<u>Outline</u>

- 1 Background and Objectives
- 2 Model Equations and Modeling
- 3 Results
- 4 Conclusions and Further Work

1 **Background** and Objectives

Background:

SMR (Steam Methane Reforming)

 $CH_4(g) + H_2O(g) = CO(g) + 3H_2(g)$

 $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$ $\Delta H_{298} = -41.5 \,\text{kJ/mol}$

 $CH_4(g) + 2H_2O(g) = CO_2(g) + 4H_2(g)$

 $\Delta H_{298} = 206.2 \, \text{kJ/mol}$

 $\Delta H_{298} = 164.7 \, \text{kJ/mol}$

SE-SMR (Sorption Enhanced SMR)

 $CaO + CO_2 \Leftrightarrow CaCO_3 \qquad \Delta H_{298} = -178 \text{ kJ/mol}$ Advantages:

1. Separation of the green house gas CO₂

2. Higher purity of Hydrogen

Reactor: Fixed Bed

Fluidized Beds: Bubble bed, riser

Lindborg et al.(2008), Wang et al.(2010,2011) From Reactor Technology Group, NTNU Have conducted 2D,3D 2-phase modeling.

Objective: 3-phase Bubble bed modeling.

1 Background and Objectives

Applying Gas-Catalyst-Sorbent 3- phase reactive flow model for SE-SMR fluidized bed reactor

Check Catalyst-Sorbent segregation-mixing behavior

Johnsen et at.(2006): Catalyst: 150-250um, 2200kg/m3

Check other Flow and Reaction performance

Subscript: 0 Gas, i = 1 (catalyst), 2 (sorbent)

Continuity Equations

$$\frac{\partial}{\partial t}(\alpha_{i}\rho_{i}) + \nabla \cdot (\alpha_{i}\rho_{i}\mathbf{v}_{i}) = \Gamma_{i} \quad i = 0,1,2$$
Gas particle coupling

$$\frac{\partial}{\partial t}(\alpha_{0}\rho_{0}\mathbf{v}_{0}) + \nabla \cdot (\alpha_{0}\rho_{0}\mathbf{v}_{0}\mathbf{v}_{0}) = -\alpha_{0}\nabla p_{0} - \nabla \cdot \alpha_{0}(\tau_{0} + \tau_{t}) + \sum_{k=1}^{2}\beta_{0k}(\mathbf{v}_{k} - \mathbf{v}_{0}) + \alpha_{0}\rho_{0g}$$
Particle momentum Equations $i = 1,2$

$$\frac{\partial}{\partial t}(\alpha_{i}\rho_{i}\mathbf{v}_{i}) + \nabla \cdot (\alpha_{i}\rho_{i}\mathbf{v}_{i}\mathbf{v}_{i}) = -\alpha_{i}\nabla p_{0} - \nabla \cdot \mathbf{p}_{i} + \beta_{0i}(\mathbf{v}_{0} - \mathbf{v}_{i}) + \sum_{k=1}^{2}\beta_{ik}(\mathbf{v}_{k} - \mathbf{v}_{i}) + \alpha_{i}\rho_{i}\mathbf{g}$$
Granular temperature Equations $i = 1,2$

$$\frac{3}{2}\frac{\partial}{\partial t}(\alpha_{i}\rho_{i}\Theta_{i}) + \frac{3}{2}\nabla \cdot (\alpha_{i}\rho_{i}\Theta_{i}\mathbf{v}_{i}) = -\mathbf{p}_{i}: \nabla\mathbf{v}_{i} - \nabla \cdot \mathbf{q}_{i} + 3\beta_{0i}\Theta_{i} + \gamma_{i}$$

Gas turbulent kinetic engergy Equation $\frac{\partial}{\partial t}(\alpha_{0}\rho_{0}k_{0}) + \nabla \cdot (\alpha_{0}\rho_{0}k_{0}\mathbf{v}_{0}) = \alpha_{0}(-\tau_{t}:\nabla\mathbf{v}_{0}+S_{t}) + \nabla \cdot (\alpha_{0}\frac{\mu_{0}^{t}}{\sigma_{0}}\nabla k_{0}) - \alpha_{0}\rho_{0}\varepsilon_{0}$ Gas turbulent kinetic engergy dissipation rate Equation $\frac{\partial}{\partial t}(\alpha_{0}\rho_{0}\varepsilon_{0}) + \nabla \cdot (\alpha_{0}\rho_{0}\varepsilon_{0}\mathbf{v}_{0}) = \alpha_{0}C_{1}\frac{\varepsilon_{0}}{k_{0}}(-\tau_{t}:\nabla\mathbf{v}_{0}+S_{t}) + \nabla \cdot (\alpha_{0}\frac{\mu_{0}^{t}}{\sigma_{\varepsilon}}\nabla\varepsilon_{0}) - \alpha_{0}\rho_{0}C_{2}\frac{\varepsilon_{0}^{2}}{k_{0}}$

Gas molecular temperature Equation $\alpha_0 \rho_0 C_{p,0} \frac{DT_0}{Dt} = \nabla \cdot \alpha_0 \lambda_0^{\text{eff}} \nabla T_0 + Q_{01} + Q_{02} + \sum_{j=1}^3 R_j^{SMR} \Delta H_j^{SMR}$ Catalyst molecular temperature Equation

$$\alpha_1 \rho_1 C_{p,1} \frac{DT_1}{Dt} = \nabla \cdot \alpha_1 \lambda_1^{\text{eff}} \nabla T_1 - Q_{01}$$

Sorbent molecular temperature Equation

$$\alpha_2 \rho_2 C_{p,2} \frac{DT_2}{Dt} = \nabla \cdot \alpha_2 \lambda_2^{\text{eff}} \nabla T_2 + R^{Sorb} \Delta H^{Sorb} - Q_{02}$$

Gas species transport Equation

$$\frac{\partial}{\partial t}(\rho_0\omega_j) + \nabla \cdot (\rho_0\mathbf{v}_0\omega_j) = \nabla \cdot \left(\rho_0 D_0^{\text{eff}}\nabla\omega_j\right) + R_j + \frac{\Gamma_0}{\alpha_0}\omega_j^i$$

Innovation and Creativity

Xu and Froment (1989) $R_{1}^{SMR} = \frac{k_{1}}{p_{H_{2}}^{2.5}} \left[\frac{p_{CH_{4}}p_{H_{2}O} - p_{H_{2}}^{3}p_{CO}/K_{1}}{DEN^{2}} \right]$ $R_{2}^{SMR} = \frac{k_{2}}{p_{H_{2}}} \left[\frac{p_{CO}p_{H_{2}O} - p_{H_{2}}p_{CO_{2}}/K_{2}}{DEN^{2}} \right]$ $R_{3}^{SMR} = \frac{k_{3}}{p_{H_{2}}^{3.5}} \left[\frac{p_{CH_{4}}p_{H_{2}O}^{2} - p_{H_{2}}^{4}p_{CO_{2}}/K_{3}}{DEN^{2}} \right]$

Sun et al. (2008)

 $R^{Sorb} = 56k_s(1-X)(p_{CO_2} - p_{CO_{2,eq}})^n S$

2 Model Equations and Modeling Phase coupling:

(1) Gas—catalysts—sorbents momentum

$$\beta_{0k} = \begin{cases} \frac{150\mu_0(1-\alpha_0)\alpha_k}{\alpha_0 d_k^2} + \frac{1.75\alpha_k\rho_0|\mathbf{v}_0 - \mathbf{v}_k|}{d_k} & \text{if } \alpha_0 \le 0.8\\ \frac{3C_D\rho_0\alpha_k|\mathbf{v}_0 - \mathbf{v}_k|}{4d_k} \alpha_0^{-1.65} & \text{if } \alpha_0 > 0.8 \end{cases}$$

$$\beta_{12} = \frac{m_1 m_2 n_1 n_2}{m_1 + m_2} d_{12}^2 (1 + e_{12}) g_{12} \{ (\sqrt{2\pi} \Theta_1^{0.5} + \sqrt{2\pi} \Theta_2^{0.5} - \sqrt{2} \Theta_{12}^{0.25} \Theta_2^{0.25}) \\ + [\frac{\pi}{2} v_{12} - 1.135 v_{12}^{0.5} (\Theta_1^{0.25} + \Theta_1^{0.25} + 0.8 \Theta_1^{0.125} \Theta_1^{0.125})] \} + \beta_{12}^{fri}$$

(2) Gas—catalysts (sorbents) heat transfer

$$Q_{0k} = \frac{6\alpha_k}{d_k} h_{0k} (T_k - T_0)$$

Parameters	Values
Bed height (m)	0.66
Bed diameter (m)	0.1
Total mass of the particles(kg)	3.1
Catalyst to calcined dolomite mass ratio	2.5
Static bed height (m)	0.3
Catalyst particle size (μm)	150-250
Dolomite particle size (μm)	125-300
Reforming Temperature (°C)	600
Superficial gas velocity(m/s)	0.096
Steam to Carbon molar feed ratio	3
Catalyst density (kg/m ³)	2200
Dolomite particle density (kg/m ³)	1560

Laboratory Scale bubble bed reactor from Johnson et al. (2006) is investigated.

3 Results

3.1 Hydrogen purity for SMR, SE-SMR

3 Results

3.2 Gas temperatures for SMR, SE-SMR

3 Results 3.3 Catalyst-Sorbent Segregation

$$\mathbf{x} = \mathbf{q}/\mathbf{q}_{\max} \ \boldsymbol{\rho}_s(kg \ / \ m^3)$$

0.2	1694

$$\rho_c = 2200 kg / m^3$$

3 Results 3.4 Particle flow profiles, sorbent

3 Results 3.5 Sorption-enhanced performance in the adsorption process

Innovation and Creativity

4 Conclusions and Further Work4.1 Conclusions

➤ A three-fluid reactive flow model was applied to SE-SMR reactor, reasonable results are obtained:

--SE objective could be realized.

--The hydrogen purity agrees well with the experiment.

> SE-SMR Process are characterized by:

- -- Sorbent weight increases
- -- changed particle flow profiles.
- -- binary particles: segregated to mixed.

-- Even when x =0.7, the outlet H2 purity can get 3° 1° 1° 1° 1°

4.2 Further work

Natural sorbents used in the present investigation

Dolomite: 1560kg/m3

Catalyst: 2200kg/m3

If synthetic sorbents are to be used

Synthetic CaO: 2500kg/m3 (Rout et al.2011)

Catalyst: 2200kg/m3

Thank you for your attention!

