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• inGAP is a National Centre of Research-based Innovation (SFI), 
appointed by the Norwegian Research Council.

• inGAP's vision is value creation in natural-gas processes through 
rational design of processes and products based on atomistic and 
mechanistic insight in catalyst and reactor parameters under operative 
conditions

• “inGAP has very successfully developed research on natural gas 
processing in the international frontline and maintains excellent 
contacts and technology transfer with partner industries”; 
- 2010 mid-term evaluation of all CRI (SFI) centres.

• inGAP’s partners include UiO, SINTEF, Statoil, Borealis, Ineos and 
Halldor Topsøe AS (Denmark).
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Outline

• What is metal dusting?

• Important existing knowledge

• Our approach to metal dusting

• Recent results in metal dusting

• Conclusions and outlook

Koksdannelse ved cracking, 
A. Holmen, O. A. Lindvåg,
SINTEF Kjemi, 1980
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Metal dusting corrosion:


 

A potentially catastrophic materials degradation phenomenon


 

Affects process equipment applied in natural gas conversion at 
elevated temperature


 

Occurs due to the decomposition of carbon 
containing molecules to form carbon on the inner surfaces of the 
equipment


 

Proceeds by dissolution of carbon in the alloy, carbide formation and 
carbide decomposition


 

Eventually turns the alloy into fine particles
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Metal dusting @ Statoil Tjeldbergodden 
methanol plant
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What is metal dusting?
1. Carbon formation on 

inner surfaces 

2. Carbide phase 
formation and 
decomposition cycles 
within the material
– hemispherical pits
– uniform attack

3. Material is gradually 
turned into a dustlike 
corrosion product
– also contains carbides 

and oxides

Metal dusting in a
heat exchanger for
synthesis gas made
by a large grained
alloy 800
Top: wall segment
Bottom: Uniformly attacked 

surface with coke and 
carburized zones

Metal dusting in
a drain line of a Ni
based alloy located
in a steam
superheater
Example of pit formation

50 m

50 m
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Which processes and units can be 
affected by metal dusting?

• Syngas production for ammonia, methanol/DME, GTL, 
steam crackers, high-temperature fuel cells

• Could save $500 million to $1.3 billion per year in the 
hydrogen industry if prevented
– “Increased industrial productivity by enabling machinery to 

function with fewer maintenance shutdowns. Such savings will 
become increasingly important as hydrogen is used more as a 
source of energy “ (Argonne national laboratory, US)

• Plant conditions natural gas reforming:
– Reduction of costs is a natural target
– Decrease the steam content in the process gas while increasing 

the overall reformer capacity

– Steam/carbon ratio decreased  Risk for metal dusting in heat 
recovery units will be higher
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The kinetic control of carbon formation

• The extent of carbon formation is determined by the surface on which 
the carbon forms; i.e. unwanted catalytic reactions

• Metallic phases (particles) known to activate CO (CH4 ) and to form 
carbides; i.e. Ni, Fe, Co, …

• The metals are important in steel/HT-alloys
• Carbon formation 

analogous to on 
Ni(Fe)-based 
catalysts 
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Carbon formation on Ni observed in situ at 
Halldor Topsoe AS
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Selective synthesis 
of CNF/CNT

CNT/CNF as 
catalyst supports

Pt/CNF
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Metal dusting prevention

• Adjustment or careful selection of process parameters 
(T, P, C)

• Development of new, metal dusting resistant, alloys
• Application of coatings to protect the underlying 

metal/alloy matrix 
 (Cr-, Al- surface oxide layer)

• Mixing process gas with low concentration of sulfur 
compounds (H2S, CS2, (CH3)2S2, etc.)
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Our (non-metallurgical) approach

Any better predictive tools for the carbon formation is an 
immediate cash saver, therefore

• Understand the initiation of the carbon formation
– Where does the first carbon form and what is the structure and 

composition of these “sites”?
– Can these sites be manipulated_

• Develop experimental procedures that are informative yet 
representative
– “Shorten” the phenomenological time scale from months/years to 

hours/days
– Control the alloy composition and pretreatment
– Apply advanced characterization tools
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Effect of oxidation pretreatment 
conditions on a commercial alloy
• Inconel alloy 601: 

(58–63%Ni, 21–25%Cr, balance-Fe 
with Al, C, Mn, S, Si, Cu)

• As-received and polished samples
• 3 oxidation atmospheres:

– 100% O2

– 0.5% O2 in Ar
– 10 % steam – 90% Ar

• Oxidation temperatures:
– 540 °C - 980 °C

• Initial test in different carburization 
activity at 550 °C for 20h :

– 10% CO in Ar (infinite ac )
– 10% CO-10%Steam–Ar (finite ac )
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Results
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
 

The “harsher” the oxidation conditions the higher the carbon formation

As-received 100% O2 0.5% O2 – Ar
All samples subjected to 10% CO in Ar (infinite ac )
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
 

Oxide surface formed under “harsh” conditions (p-O2 , T) is less dense 
and with more defects

100% O2 0.5% O2 – Ar
Characterization by scanning electron microscopy (SEM)
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Advanced characterization

• Depth profiling of oxide layer composition and structure by 
combined Ar sputtering, Auger spectroscopy and SEM

Behavior of polished (1um) surfaces in different oxidation conditions 
(Inconel 601)
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Behavior of polished (1um) surfaces in different oxidation conditions 
(Inconel 601)
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Advanced characterization

• Depth profiling of oxide layer composition and structure by 
combined Ar sputtering, Auger spectroscopy and SEM

• Resistance to carbon formation 
appears correlated with high 
O and Cr in outer layer

• Results so far inconsistent 
with respect to Al 

Behavior of polished (1um) surfaces in different oxidation conditions 
(Inconel 601)
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
 

Carbon formation observed under conditions applied extends from 
little/no observable carbon to thick deposits of filamentous carbon
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Some conclusions

• Preparation/pretreatment protocols are very important
– Polishing 
– Oxidation conditions 

• Dense Cr-containing oxide is more protective
– Pre-polished samples treated in H2 O/Ar at the lowest temperature 

appear to have the best resistance

• Actual “catalyst” remains to be identified
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Thank you for your attention!
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