Coordinating Vessel Routing, Inventories and Trade in the LNG-Supply Chain

Truls Flatberg, Marte Fodstad, Oddvar Kloster, Arnt-Gunnar Lium, Vibeke Nørstebø, Frode Rømo, Kristin Tolstad Uggen and Adrian Werner SINTEF Technology and Society, SINTEF ICT

2nd Trondheim Gas Technology Conference, November 3, 2011

1

Talk Outline

- Introduction to the LNG business
- Decision support tools
 - MIP-based
 - Heuristics
 - (Combined)
- Results and summary

Project history

- SINTEF and GDF Suez started cooperation on decision support tools for the LNG value chain in 2005
- Statoil joined the activity in 2007
- Long term project with a strong research focus, partially funded by the Research Council of Norway
- Close cooperation between researchers and planning personnel in the companies

The LNG value chain

The need for decision support

	Long-term (2-6 years)	ADP (next year)	Operations (3 mths)
Study mode (days)	Business development	Preparation of ADP submission	Deal scanning without urgency for remainder of year
Negotiation mode (hours)		Scheduling meetings during breaks or evenings	Deal negotiation with counterparty or urgent rescheduling
Meeting mode (15 mins)		Bottleneck to be solved	

(Stremersch et al., 2008)

ADP = Annual Delivery Program

Conceptual model

LNG supply chain schedules

A LNG supply chain schedule consist of three components specified for the whole period under study:

- 1. Liquefaction terminal production schedules
 - LNG production rates
- 2. Shipping schedules
 - Where, when and how much each vessel load or unload and on which contracts
- 3. Regasification terminal send-out schedules
 - Daily volumes from the terminal on each sale contract, market or pipeline

Solving as a mixed integer problem

- Profit maximizing
- Flow-centric approach
- Daily time granularity
- Constraints
 - Flow conservation
 - Routing
 - Vessel inventory, boil-off and fuel
 - Inventories and onshore facilities
 - Contract limitations
 - Maintenance
 - Port visits, loading and unloading

$$\gamma_{wt} = \sum_{u \in \mathcal{W}^{SF}} \sigma_{wut} + \sum_{v \in \mathcal{V}} \eta_{ivwt} \quad \text{for all } i \in \mathcal{N}^{P}, \ w \in \mathcal{W}^{P}, \ t \in \mathcal{T}$$
(A.1)

$$\sum_{v \in \mathcal{V}} \lambda_{ivwt} + \sum_{u \in \mathcal{W}^{\mathsf{P}}} \gamma_{ut} = \pi_{iwt} + \sum_{u \in \mathcal{W}^{\mathsf{SE}} \cup \mathcal{W}^{\mathsf{SI}}} \sigma_{wut}$$

for all $i \in \mathcal{N}^{\mathsf{C}}, w \in \mathcal{W}^{\mathsf{P}}, t \in \mathcal{T}$ (A.2)

$$\sum_{w \in \mathcal{W}^{\mathsf{P}}} Q_w (1 - F_{it}^{\mathsf{C}}) \phi_{iwt} = \sum_{h \in \mathcal{H}} \chi_{iht} \quad \text{for all } i \in \mathcal{N}^{\mathsf{C}}, \ t \in \mathcal{T}$$
(A.3)

$$\sum_{v \in \mathcal{V}} \sum_{w \in \mathcal{W}^{p}} \mathcal{Q}_{w} (1 - F_{ivt}^{\text{BV}}) \lambda_{ivwt} + \sum_{w \in \mathcal{W}^{p}} \mathcal{Q}_{w} (1 - F_{iwt}^{\text{BW}}) \gamma_{wt} = \sum_{h \in \mathcal{A}} \chi_{iht}$$
for all $i \in \mathcal{N}^{\text{B}}, \ t \in \mathcal{T}$ (A.4)

$$\sum_{i \in \mathcal{N}^{\mathbb{C}} \cup \mathcal{N}^{\mathbb{B}}} \chi_{iht} = \sum_{w \in \mathcal{W}^{\text{natural gas}}} \psi_{wt} + \omega_{ht} \quad \text{for all } h \in \mathcal{H}, \ t \in \mathcal{T}$$
(A.5)

Solving using heuristics

- Routing-centric approach
- Based on a framework for general maritime inventory routing problems
- Omitting market details

Solution strategy

- Heuristic construction and optimization
- Violate constraints by doing too little \rightarrow penalize
 - Stockout/overflow
 - Contract limit not met
 - Too few visits in time period
- Reduce penalty by adding shipments
- Be greedy
- Try to resolve conflicts using delays

MIP vs Heuristics

	Pros	Cons
MIP	 Rich in details Volume flexibility Market modeling Bounds 	• Slow • Problems handling large problems
Heuristics	 Fast Can handle large problems Finding feasible solutions 	• Only full vessel loads • Few market details • Greedy

Combined approach

- Use heuristics to generate a diversified set of feasible solutions
- Use routing part of solution to fix routing decisions in MIP
- Variations
 - +/- days
 - Subset of vessels
 - Liquefaction visits only

Example

- Test case constructed from a real world setting
- Medium sized problem, 180 days horizon
 - 8 vessels
 - 4 liquefaction terminals
 - 3 regasification terminals

Vessel schedule/inventory

Port schedule/inventory

Results

Summary and future challenges

- Decision support tools for the LNG value chain developed in close cooperation with the industry
- The appropriate tool depends on problem characteristics and the study settings
 - Mixed integer problem
 - Heuristics
 - Combined method
- Future challenges
 - Handling an uncertain future robustness and flexibility
 - New technology: floating terminals, vessel-to-vessel transfer
 - New business: storage terminals, arctic operations

Further information

- G. Stremersch , J. Michalek and S. Hecq, *Decision Support Software Tools for LNG Supply Chain Management*, Gastech 2008.
- M. Fodstad, K.T. Uggen, F. Rømo, A.-G. Lium, G. Stremersch and S. Hecq, LNGScheduler: a rich model for coordinating vessel routing, inventories and trade in the liquefied natural gas supply chain, The Journal of Energy Markets (2010).
- M. Christiansen , K. Fagerholt, T. Flatberg, Ø. Haugen, O. Kloster and E.H. Lund, *Maritime inventory routing with multiple products: A case study from the cement industry*, European Journal of Operational Research (2010)

Thanks for your attention!

