2nd Trondheim Gas Technology Conference

Active Vapor Split Adjustment for Energy Optimal Control of Dividing Wall Distillation Columns: Experimental Studies

Deeptanshu Dwivedi¹ Ivar J Halvorsen² Sigurd Skogestad¹

¹Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway

²Applied Cybernetics, SINTEF, Trondheim, Norway

3 Nov 2011

Dwivedi et al. (NTNU & SINTEF)

Active Vapor Split Adjustment of DWC

Outline

Introduction

- Conventional Distillation
- Thermally coupled columns
- Need for active vapor split
 - 4-product Kaibel column
 - 4-product Kaibel column: Control Structure
 - V_{min} vs R_v
 - Summary
- 3 Experimental setup
 - Pilot Plant: 4–Product Kaibel column

4 Experimental Results

- Valve behaviour
- Total Reflux
- 4–Product Kaibel column
- 5 Conclusion

Conventional distillation

- energy intensive
 - large mixing losses
 - at interconnections
 - internal remixing
 - difficult seperation first
 - large ΔT at exchangers

3 / 20

Thermally coupled columns

• examples: prefractionator arrangements

- Petlyuk column
 - originally proposed for 3 product
 - can be extended to more than 3 products
 - easiest separation first
 - low mixing losses
 - energy saving upto 50 % for 4-component
- Kaibel Column
 - energy saving upto 30 % for 4-component

★ ∃ →

Thermally coupled columns

examples: prefractionator arrangements

- Petlyuk column
 - originally proposed for 3 product
 - can be extended to more than 3 products
 - easiest separation first
 - low mixing losses
 - energy saving upto 50 % for 4-component
- Kaibel Column
 - energy saving upto 30 % for 4-component

• can be realized by divided-wall columns (DWC)

4-product Kaibel column

- A: methanol
- B: ethanol
- C: propanol
- D: butanol

∃ →

• • • • • • • • • • • •

4–product Kaibel column

Dwivedi et al. (NTNU & SINTEF)

★ ∃ >

4-product Kaibel column: Control Structure

Regulatory layer when $V > V_{min}$

- 4 point temperature control
- inventory control
- fixed V & Rv

• demonstrated experimentally

4-point control: Experiments

3

4-product Kaibel column: Control Structure

Regulatory layer when $V = V_{min}$

- 5 point temperature control
- inventory control
- also use Rv

V_{min} vs R_v

boilup (V_{min}) vs Vapor Split (R_v)

- $z_F = equimolar$
- purity spec: 98% for all products

Figure: V_{min} vs R_v

★ ∃ >

boilup (V_{min}) vs Vapor Split (R_v) changes with disturbances

Figure: V_{min} vs R_v

- 4 ≣ ▶

0.9

Dwivedi et al. (NTNU & SINTEF)

Active Vapor Split Adjustment of DWC

3 Nov 2011 11 / 20

• active vapor split control required

イロト イヨト イヨト イヨト

- active vapor split control required
 - to remain close to optimum R_v and V_{min}
 - to aid to flexibility in optimal operation for varying disturbances

► < ∃ ►</p>

- active vapor split control required
 - to remain close to optimum R_v and V_{min}
 - to aid to flexibility in optimal operation for varying disturbances
- Problem: Vapor Split may/will be uncertain

- active vapor split control required
 - to remain close to optimum R_v and V_{min}
 - to aid to flexibility in optimal operation for varying disturbances
- Problem: Vapor Split may/will be uncertain
- Solution: feedback action can remove this uncertainity in input

- active vapor split control required
 - to remain close to optimum R_v and V_{min}
 - to aid to flexibility in optimal operation for varying disturbances
- Problem: Vapor Split may/will be uncertain
- Solution: feedback action can remove this uncertainity in input
- In four point control

- active vapor split control required
 - to remain close to optimum R_v and V_{min}
 - to aid to flexibility in optimal operation for varying disturbances
- Problem: Vapor Split may/will be uncertain
- Solution: feedback action can remove this uncertainity in input
- In four point control
 - RI is very precise input: can be used in optimizing layer
 - Rv is uncertain input: can be used in regulatory layer with feedback

• • = • • = •

Pilot Plant

8 m

<ロ> (日) (日) (日) (日) (日)

Vapor Split Valves

イロト イポト イヨト イヨト

stepper motor

Dwivedi et al. (NTNU & SINTEF)

Active Vapor Split Adjustment of DWC

▶ < ≣ ▶ ≣ ∽ ९ ୯ 3 Nov 2011 13 / 20

Split range logic

<ロ> (日) (日) (日) (日) (日)

Vapor valve characteristics- Manual mode

Dwivedi et al. (NTNU & SINTEF)

Vapor valve characteristics- Manual mode

Active Vapor Split Adjustment of DWC

3 Nov 2011 15 / 20

< E

Vapor valve characteristics- Manual mode

3 Nov 2011 15 / 20

Experiments: total reflux

- total reflux conditions
- valve control: split range logic
- control variable:
 - $\Delta T = T2 T5$

→ Ξ →

Run

3 Nov 2011 17

æ

イロト イヨト イヨト イヨト

17 / 20

Experiments: 4–Product Kaibel column

- 4-point temperature control
- 1 temperature in prefractionator controlled with Rv *in place of Rl*
 - control variable: T2
- 3 temperature controlled with L, S1 & S2
 - control variable: T3, T5 & T6
- RI is very precise input
 - can be used as optimizing input

Run

Dwivedi et al. (NTNU & SINTEF)

Active Vapor Split Adjustment of DWC

3 Nov 2011 19

æ

A B > A B >

19 / 20

Conclusions

Dwivedi et al. (NTNU & SINTEF)

Active Vapor Split Adjustment of DWC

3 Nov 2011 20 / 20

• Active vapor split is feasible

Dwivedi et al. (NTNU & SINTEF)

Active Vapor Split Adjustment of DWC

3 Nov 2011 20 / 20

æ

- Active vapor split is feasible
- Active vapor split will aid in minimum energy operation

(日) (同) (三) (三)

- Active vapor split is feasible
- Active vapor split will aid in minimum energy operation
- Feedback action can remove uncertainity and drive vapor split ratio to accurate position
 - in 5 point control: Rv can be used in regulatory layer
 - in 4 point control: Rv *should* be used in regulatory layer, RI *can be* used for optimization

• • = • • = •

- Active vapor split is feasible
- Active vapor split will aid in minimum energy operation
- Feedback action can remove uncertainity and drive vapor split ratio to accurate position
 - in 5 point control: Rv can be used in regulatory layer
 - in 4 point control: Rv *should* be used in regulatory layer, RI *can be* used for optimization
- Further works needed

- Active vapor split is feasible
- Active vapor split will aid in minimum energy operation
- Feedback action can remove uncertainity and drive vapor split ratio to accurate position
 - in 5 point control: Rv can be used in regulatory layer
 - in 4 point control: Rv should be used in regulatory layer, RI can be used for optimization
- Further works needed
 - Superior valve design to operate in low pressure drop applications

• • = • • = •