Active constraint regions for optimal operation of a simple LNG process

Magnus G. Jacobsen and Sigurd Skogestad Department of Chemical Engineering NTNU Trondheim, Norway

2nd Trondheim Gas Technology Conference November 3rd, 2011

www.ntnu.no

Active constraint regions for a simple liquefaction process.

OUTLINE:

- The PRICO process
- Modelling
- Definition of optimal operation
 - Minimize compressor work
 - Degrees of freedom
 - Constraints
- Optimal operation
 - Active constraint regions as a function of disturbances in feedrate and ambient temperature
- Control

The PRICO process

• Simple LNG liquefaction process with one multi-stream heat exchanger and a mixed refrigerant

Natural gas (NG): 90% C1, 5% C2, 2% C3, 0.1% C4, 3% N2 (mole-%) Mixed refrigerant (MR): 33% C1, 34%C2, 0% C3, 23% C4, 10% N2

Norwegian University of Science and Technology

Temperature profile in main heat exchanger

4

www.ntnu.no

Modelling

- Unisim flowsheet simulator (Honewell) = Hysys (Aspen)
- SRK equation of state
- Data from Jensen and Skogestad (Adchem 2006)
 - Natural gas feed (1517 kmol/h, 40 bar, 30C): 90% C1,5% C2, 2% C3, 3%N2
 - Mixed refrigerant (6930 kmol/h): 33% C1, 34%C2, 0% C3, 23% C4, 10% N2
 - Cycle pressures: About 30 bar and 5 bar
 - Compressor speed = 1000 rms
 - Given compressor characteristics

Compressor map as function of speed (N) and MR flowrate

NTNU Norwegian University of Science and Technology

Key variables (nominal conditions)

Variable	This work	Jensen's work*
$W_s [MW]$	119	120
Compressor outlet pressure [bar]	30.2	30.0
Compressor efficiency η	81.8	82.8
$\Delta T_{sup} \ [^{\circ}\mathrm{C}]$	5.1	11.3
$\Delta T_{min,HX} \ [^{\circ}C]$	1.57	
$UA_{NG} [kW/^{\circ}C]$	$9.20 \cdot 10^{3}$	$8.45 \cdot 10^{3}$
$UA_{MR} [kW/^{\circ}C]$	$4.62\cdot 10^4$	$5.32 \cdot 10^4$

*gProms

7

Optimal operation

- Equipment fixed (UA-values, compressor map)!
- Optimization objective: Minimize compressor work (cost $J = W_s$)
- Five degrees of freedom for operation:
 - 1. Amount of cooling in condenser (assumed at max)
 - 2. Compressor speed
 - 3. Turbine speed
 - 4. Choke valve opening
 - 5. Active charge (level in liquid receiver)

Constraints for operation

- 1. Refrigerant to compressor must be superheated, $\Delta T_{sup} > 5^{\circ}C$
- 2. Compressor must not operate in surge, $\Delta M_{surge} > 0$
- 3. Maximum compressor work, $W_s \le 132$ MW
- 4. Turbine exit stream must be liquid only, $\Delta P_{sat} > 0$
- 5. Maximum compressor speed: $\omega_{comp} \le \omega_{max} = 1200$ rpm
- + Exit temperature for natural gas, $T_{NG,out} \leq -157^{\circ}C$ (always active)
- + constraints on fully closed or open valves (cooling assumed at max)

-> 5 CONSTRAINTS + REMAIN TO BE CONSIDERED + 3 UNCONSTRAINED DOFs

Optimal operation with compressor speed as DOF (nominal feedrate)

Variable	This work	Jensen's wor	·k
MR flow rate [kmol/s]	16.94	18.70	
Compressor speed ω [rpm]	1143	1000	
Compressor inlet pressure [kPa]	383.2	414.0	1
Turbine outlet pressure [kPa]	552.5	1029	
Compressor inlet $T [^{\circ}C]$	15.8	N/A	
T_{MR} at HX outlet [°C]	-163.9	-157.0	
$T_{\rm NG}$ at HX outlet [°C]	-157.0	-157.0	
Compressor work W_s [MW]	116.4	120.0	
$\Delta T_{sup} \ [^{\circ}C]$	19.4	11.3	
$\Delta T_{min,HX}$ [°C]	0.7	N/A	1 (of 5) active
Compressor efficiency η	82.1	82.8	constraint
$\Delta M_{\rm surge} \ [\%]$	0	0	sity of
$\Delta P_{\rm sat} \; [\rm kPa]$	1.1	20	ology

www.ntnu

Want optimal operation also for disturbances

- NG feed flow rate [mol/s], +- 20%
- Ambient temperature [°C] or actually cold inlet temperature to HEX for NG and MR (nominally 30C)

Science and Technology

How do active constraints change?

- Have 3 DOFs and 5 constraints
 - $\Delta T_{\rm sup,}, W_{\rm s,} \Delta P_{\rm sat,} \omega_{\rm comp}$
- 26 possible constraint combinations (of 3 or less)
- Only 5 combinations ("regions") found in our simulations:
 - I. ΔM_{surge} is active
 - II. ΔT_{sup} and ΔM_{surge} are active
 - III. ΔT_{sup} , ΔP_{sat} and ω_{max} are active
 - IV. ΔT_{sup} and ω_{max} are active
 - V. ω_{\max} is active

³Constrains regions for PRICO process

Upper blue line: Cannot exceed W_{s,max} since we minimize J=W_s

Lower green line: Too cold to get supersaturation > 5C... cool less or adjust MR composition

Control of PRICO process

- 5 regions \rightarrow 5 control structures?
- ΔP_{sat} is optimally close to zero in all regions
 - Keep at zero to simplify
- Surge margin and max speed: closely connected (switch)
 - Use compressor speed to control $\Delta M_{\rm surge}$ when $\omega_{\rm opt} < \omega_{\rm max}$
- We can use two control structures!
 - One for Regions I and V (where ΔT_{sup} is inactive)
 - One for Regions II, III and IV (where ΔT_{sup} is active)

Control structure

Control structure

But: Constant level assumed used as self-optimizing variable when constraint on DTSUP is not active

Norwegian University of Science and Technology

Control structure

But: DPSAT >0 (and valve) may be needed to make sure we have no vapor in turbine

NTNU

Norwegian University of Science and Technology

www.ntnu.no

Conclusions

- Optimization of PRICO LNG-process (Unisim/Hysys)
- Optimal operation (given UA-values + compressor) is often not same as optimal design
- Propose simple control structure to achieve optimal operation for disturbances in feed rate and temperature
- Still remains: Find self-optimizing variable when constraint on ΔT_{SUP} is not active

