From droplets to process:
Multilevel research approach to reduce emissions from LNG processes

Sigurd Weidemann Løvseth
Ingrid Snustad
Amy Leigh Brunsvold
Geir Skaugen
Per Eilif Wahl
Motivation for research on LNG liquefaction

- Global trends
 - LNG penetration in the energy market has increased tremendously during last decades
 - Rapid LNG growth will continue
 - Increased demand according to IEA's 2 DS
 - Large regional variation in LNG price
 - High number of LNG carriers under order
- National trends
 - Higher NG than oil production in terms of o.e.
 - Remote fields / associated gas
 - LNG plants are expensive to construct and operate
 - Cost reductions and improved reliability have big impact!
Fundamentals for multilevel modelling

- Competence building project (KMB -> KPN) with co-funding from the Research Council of Norway (PETROMAKS Programme)
- SINTEF and NTNU are research partners
- GDF SUEZ and Statoil are industrial partners
- Project duration:
 - 6 years (2009-2014)
 - Start-up Q3 2009

http://www.sintef.no/lelng
Low-Emission LNG Systems
Project Goal

Facilitate sustainable production of natural gas by developing

- knowledge
- competence
- tools enabling
- evaluation
- design
- operation

of innovative, environmentally safe, cost-effective, and energy-efficient LNG systems.
Low-Emission LNG Overview

SP3: LNG processes

SP2: Heat exchanger modeling

SP1: Two-phase flow phenomena

Detailed heat exchanger model

Robust modeling framework

HX understanding

HX 2-phase flow distr. and instabilities

Flow map

Modeling

Verification

Understanding

Experiments

Scale

Photo: The Linde group
Low-Emission LNG Overview

SP1: Two-phase flow phenomena

Modeling → Verification → Understanding → Experiments
Motivation: Two-phase flow phenomena

Purpose of work package
To gain insight into fundamental phenomena occurring in heat exchangers in liquefaction plants.

Basic hypothesis
A thorough understanding of the processes and phenomena occurring at a small-scale level in the heat exchanger is necessary to obtain an improved understanding of the heat exchanger, its design and operation.
Enabling low-emission LNG systems
SP1: Two-phase flow phenomena in LNG processes

Example: water droplets on water pool
Experimental Study of detailed flow phenomena

Detailed experiments necessary in order to learn the droplet / film behaviour and important for e.g. heat transfer and pressure fall. N-pentane used as a model fluid.
Experimental study of detailed flow phenomena

Detailed experiments necessary in order to learn the droplet / film behavior and important for e.g. heat transfer and pressure fall. N-pentane used as a model fluid.

• Droplet falling in deep pool

Experimental study of detailed flow phenomena

Detailed experiments necessary in order to learn the droplet / film behavior and important for e.g. heat transfer and pressure fall. N-pentane used as a model fluid.

- Droplets falling
 - in deep pool
 - on films flowing on tilted board

Brunsvold, A., Å. Ervik, and H. Zhao, ASME 2013 Fluids Engineering Division Summer Meeting. 2013, ASME. p. V01CT17A003
Experimental study of detailed flow phenomena

Detailed experiments necessary in order to learn the droplet / film behavior and important for e.g. heat transfer and pressure fall. N-pentane used as a model fluid.

- Droplets falling
 - in deep pool
 - on films flowing on tilted board
 - films of different thickness
Experimental study of detailed flow phenomena

Detailed experiments necessary in order to learn the droplet / film behavior and important for e.g. heat transfer and pressure fall. N-pentane used as a model fluid.

- Droplets falling
 - in deep pool
 - on films flowing on tilted board
 - films of different thickness
- Study of different regimes of flow falling on cylinders
Experimental study of detailed flow phenomena

Detailed experiments necessary in order to learn the droplet / film behavior and important for e.g. heat transfer and pressure fall. N-pentane used as a model fluid.

• Droplets falling
 • in deep pool
 • on films flowing on tilted board
 • films of different thickness
• Study of different regimes of flow falling on cylinders
• Film thickness measurements

(In progress)
Modeling of detailed flow phenomena

- Based on level-set method to track interfaces
- Reformulation needed in order to account for discontinuous curvature

Karl Yngve Lervåg, PhD, Sept 2013
Modeling of detailed flow phenomena

- Based on level-set method to track interfaces
- Reformulation needed in order to account for discontinuous curvature
- Model-experiment comparison for droplet-film coalescence possible
Modeling of detailed flow phenomena

- Based on level-set method to track interfaces
- Reformulation needed in order to account for discontinuous curvature
- Describes droplet-film coalescence
- Heat and mass transfer
Modeling of detailed flow phenomena

- Based on level-set method to track interfaces
- Reformulation needed in order to account for discontinuous curvature
- Describes droplet-film coalescence
- Heat and mass transfer
 - Including heat transfer and condensation in pipes (in progress)
Low-Emission LNG Overview

SP2: Heat exchanger modeling

- Robust modeling framework
- HX understanding
- HX 2-phase flow distr. and instabilities

Flow map

SP1: Two-phase flow phenomena

- Modeling
- Verification
- Understanding
- Experiments
Heat Exchanger Modeling

FLEXHx: A Flexible Heat Exchanger Network

- Normally/ elsewhere, heat exchangers are simplified:
 - composite curve based
 - constant
 - heat transfer rates
 - heat capacities
 - constant or simplified pressure drop model.
- Geometry information is important in order to model:
 - Non-idealities
 - Dynamic behavior
 - **Realistic weight / volume => costs**
Heat Exchanger Modeling

FLEXHx: A Flexible Heat Exchanger Network

Generic tool with building blocks of:
- fluid nodes
- heat nodes
- surfaces
- thermal resistors
- splitters
- mixers
- flash units
- flow restrictions

Flexible and robust data structure to handle various heat exchanger variants

- Currently implemented: Shell & tube, plate-fin

Heat Exchanger Modeling

FLEXHx: A Flexible Heat Exchanger Network - Robustness

Heat balance $100x(Q_{\text{warm}}-Q_{\text{cold}})/Q_{\text{cold}}$

<table>
<thead>
<tr>
<th>Number</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00E-04</td>
<td>796</td>
</tr>
<tr>
<td>0.00E-03</td>
<td>22</td>
</tr>
<tr>
<td>0.01</td>
<td>2</td>
</tr>
<tr>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>1000</td>
<td>27</td>
</tr>
</tbody>
</table>
Heat Exchanger Modeling

FLEXHx: A Flexible Heat Exchanger Network: Optimization of a simple single cycle LNG process with no refrigerant optimization

G. Skaugen et al., ICAE2013
Heat Exchanger Modeling

FLEXHx: A Flexible Heat Exchanger Network: Optimization of a simple single cycle LNG process with refrigerant optimization – work under progress
Heat Exchanger Modeling

FLEXHx: A Flexible Heat Exchanger Network: Instabilities

- Looking at local effects: Individual layers
Heat Exchanger Modeling

FLEXHx: A Flexible Heat Exchanger Network: Instabilities

- Ledinegg: Caused by increased vapor void fraction while boiling
Heat Exchanger Modeling

FLEXHx: A Flexible Heat Exchanger Network: Instabilities

Two solutions:

Blue: Metal temperatures
Red: Stream temperatures

G. Skaugen
TGTC3
Session A5
Heat Exchanger Modeling

Junction flow modeling: Looking at dynamic effects

Gunhild Allard Reigstad: Mathematical Modelling of Fluid Flows in Pipe Networks, PhD, April 2014
Low-Emission LNG Overview

SP3: LNG processes
- Detailed heat exchanger model

SP2: Heat exchanger modeling
- Robust modeling framework
- HX understanding
- HX 2-phase flow distr. and instabilities

SP1: Two-phase flow phenomena
- Modeling
- Verification
- Understanding
- Experiments

Flow map

Scale

Photo: The Linde group
LNG Process optimization

- LNG liquefaction is energy expensive
-but difficult to optimize
 - At least $3+N-1$ dimensions
 - N number of components in refrigerant
 - Non-convex
 - Non-linear constraints
 - Kinks in derivatives
 - Non analytical objective function
- Also difficult to find solution manually, especially for complex processes
LNG Process optimization

Main approach

• Use a modularized tool based on:
 • Commercial flow-sheet simulator
 • Gradient based optimization
 • Sequential quadratic programming (SQP)

• Not trivial to implement
• For simple cases shown to be more efficient than some other published work
• Typical optimization time for a PRICO process ~5 minutes

LNG Process optimization

- Optimization module in tool can easily be substituted with other routines
- Results shown for **single cycle process** – trend clearer with more complex processes
- Gradient based require far fewer evaluations
- Currently working on complex processes (up to 3 cycles) with some success

<table>
<thead>
<tr>
<th></th>
<th>50 %</th>
<th>25 %</th>
<th>10 %</th>
<th>5 %</th>
<th>2 %</th>
<th>1 %</th>
<th>0.1 %</th>
<th>0.01 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLPQLP</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>fmincon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-SQP</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>-Interior-point</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>92</td>
<td>88</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td>-Active set</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td>98</td>
<td>98</td>
<td>95</td>
<td>89</td>
</tr>
<tr>
<td>LGO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Local search only</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>60</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>-Branch and Bound</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>-Global Adaptive Random Search</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>-Multi-start Search</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Modified ECJ</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>ASA</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>70</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GLOBAL (Fortran)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-unirandi</td>
<td>100</td>
<td>60</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-quasi Newton</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GLOBAL (MATLAB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-BFGS</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>70</td>
<td>30</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-unirandi</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SNOBFIT</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>70</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MCS</td>
<td>100</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
LNG Process optimization:

- PhD work focusing on impact of formulation of problem and thermodynamics
- At TGTC3: Single expander process optimization with different thermodynamics
Enabling Low-Emission LNG Systems

CEO Arvid Hallén, Research Council of Norway
Opening PETROMAKS Status Conference 2012-10-24
Journal and proceedings publications from Low-Emission LNG

*) Shared acknowledgment with Remote Gas
Publications (more)

- 5 more scientific articles under peer-review
- **Two PhDs completed:**
 - Karl Yngve Lervåg: *Calculation of interface curvatures with the level-set method for two-phase flow simulations and a second-order diffuse-domain method for elliptic problems in complex geometries*, September 2013
- 22 conference publications held /accepted
- ...of which 6 will be at TGTC3:
 - *Investigation of non-ideal behavior of plate-fin heat exchangers in LNG services using optimization techniques*
 - *The Enabling Low Emission LNG Systems Project*
 - *Flow pattern transitions and hysteresis effect in falling film flow over horizontal tubes*
 - *Modeling of heat transport in two-phase flow and of mass transfer between the phases using the level-set method*
 - *Pipe networks: coupling constants in a junction for isentropic Euler equations*
 - *OPTIMIZATION OF A SINGLE EXPANDER LNG PROCESS*
Conclusion

The Enabling Low-Emission LNG Systems project has provided

- knowledge
- competence
- tools enabling
- evaluation
- design
- operation of improved LNG Processes

Acknowledgments

This work was financed through the Enabling Low-Emission LNG Systems project at SINTEF Energy Research, and the authors acknowledge the contributions of GDF SUEZ, Statoil and the PETROMAKS2 program of the Research Council of Norway (193062/S60).
Experimental Study of detailed flow phenomena

Detailed experiments necessary in order to learn the droplet / film behaviour and important for e.g. heat transfer and pressure fall. N-pentane used as a model fluid.

<table>
<thead>
<tr>
<th></th>
<th>Pentane (40°C)</th>
<th>Liquid methane (-162 °C, NIST[1])</th>
<th>Water (20°C) (NIST [1])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m³)</td>
<td>606</td>
<td>422</td>
<td>998</td>
</tr>
<tr>
<td>Surface tension (N/m)</td>
<td>0.0137</td>
<td>0.0129</td>
<td>0.072</td>
</tr>
<tr>
<td>Viscosity (Pa/s)</td>
<td>1.97 * 10⁻⁴</td>
<td>1.12 * 10⁻⁴</td>
<td>10 * 10⁻⁴</td>
</tr>
<tr>
<td>Ga¹/₄</td>
<td>569</td>
<td>875</td>
<td>441</td>
</tr>
<tr>
<td>Ca (mm)</td>
<td>1.52</td>
<td>1.77</td>
<td>2.71</td>
</tr>
</tbody>
</table>
Coalescence-Splashing Threshold

\[We_c = \frac{2100 + 5800\Delta^*^{1.44}}{Oh^{-0.4}} \]

- Coalescing \(n \)-pentane droplets
- Splashing \(n \)-pentane droplets
- Cossali c-s threshold
- Adjusted normal We corrected threshold