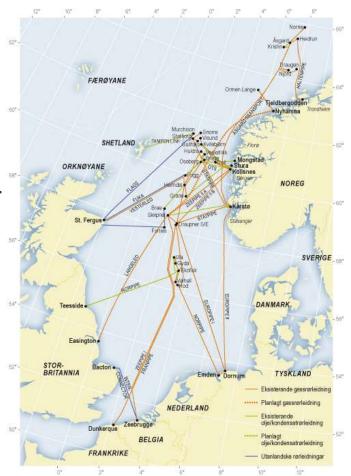
3rd Trondheim GTS Conference

Pooling Problems in Natural Gas Transport

Adrian Werner Lars Hellemo Asgeir Tomasgard

Natural Gas Transport

- Transport natural gas from fields / production nodes via intermediary nodes and processing plants to markets / customers
- One typical problem: find optimal flow minimize costs, maximize revenue, maximize flow , ...
- Constraints: physical / technological, economical / business, ...
- May be embedded:
 - Infrastructure investment or network design problems
 - Several time periods



Pooling in Natural Gas Transport

Fields: Quality variations at different sources

 Varying shares of components in gas flow CO₂, H₂S, CH₄, C₂H₆, C₃H₈, ...

Markets: Quality requirements

Component content, linear blending

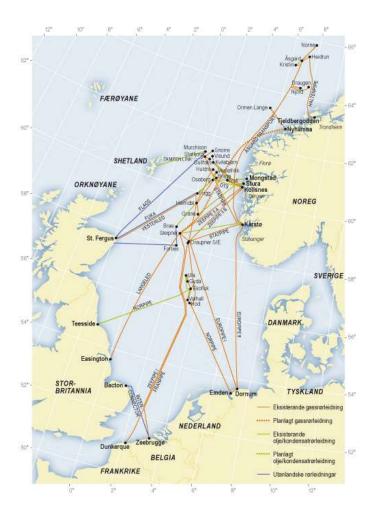
- GCV band (composite, approximately linear)
- CO₂ limits
- H₂S limits

Composite quality parameters

- WI (Wobbe Index)
- SI (Soot Index)

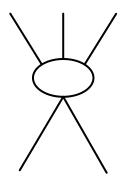
Markets: Price differences (may be quality dependent)

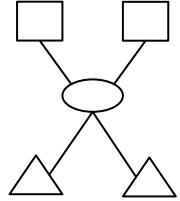
Maximize profit or revenue, subject to quality constraints



Pooling Formulation

- Pooling:
 - Intermediate nodes
 - Combine all flows into node
 - Divide over pipelines out of node
 - Keep track of composition of the flows
- Original formulation by Haverly (1978) (P):
 2 sources, 1 pool, 2 sinks
 → computationally hard, many local optima



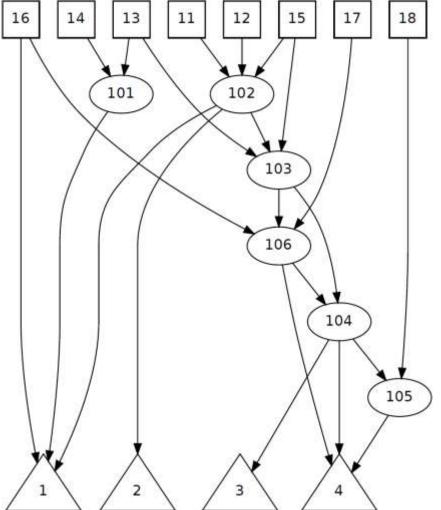


- Several reformulations:
 - Tighter formulations (solve faster): Q, PQ, TP, etc.
 - Generalizations (interconnected pools, network design)

Generalized pooling formulation

We propose a generalized formulation:

- Multiple levels of interconnected pools
- Processing facilities: may modify the flow composition
- Composite quality constraints: depend on the ratio of several components



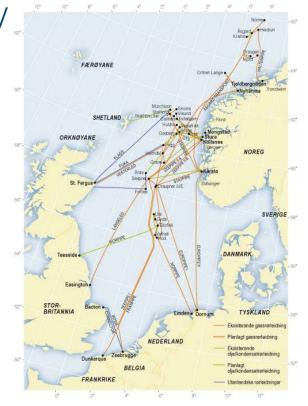
Generalized pooling formulation

Part of a larger optimization problem for capacity expansion / natural gas transport (ref. first talk in this session)

- Single period flow problems
- Multi-period investment problems with embedded pooling problem for each operational period
- Stochastic programs (uncertainty) → scenarios

Some properties

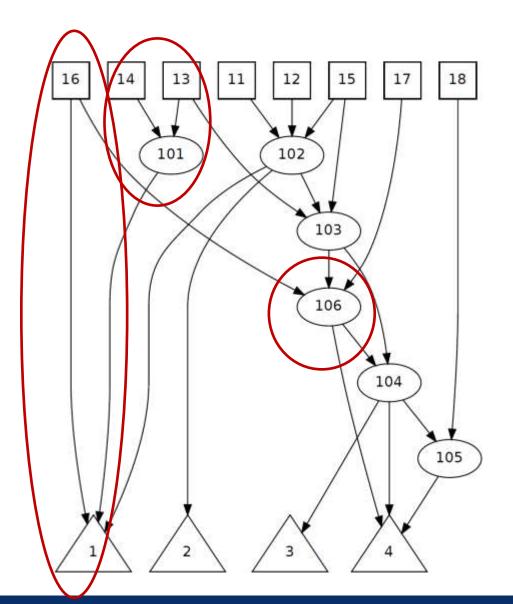
- Large-scale problems
- Require fast solution
- May need to solve similar problems many times



Computational Effort

- Maximum flow: "easy" (linear)
- Blending :"easy" (linear)
- Pooling: "hard" (non-convex, non-linear)
 - Equal ratio of volume split between pipelines out of a node

$$\frac{f_1^1}{f_2^1} = \frac{f_1^C}{f_2^C}$$



Two Approaches

Improved formulation

- Adding redundant constraints improves solution times
- Theoretically better precision/accuracy
- Less mature solvers for large scale problems

Discretization

- Replace some continuous variables with discrete variables e.g., choose between given split ratios
- Gives Mixed Integer Linear Program (MILP), also "hard"
- High quality commercial solvers available

Proposed Solution Approach

- Exploit that not all problems are equally hard, e.g.:
 - No quality constraints
 - Non-binding quality constraints
 - Optimal flow pattern "similar" to single component flow solution
- Save computational effort:
 - Start with solving simpler problem
 - Homogeneous (single-component) flow no longer a pooling problem
 - Formulation as linear problem \rightarrow can solve efficiently
 - Derive solution of more complex problem
 - Find component flows and split fractions
 - Can employ different discretization schemes

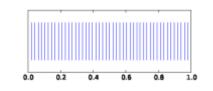
Auxiliary (Linear) Problems

- A1: Homogeneous flow problem
 - Maximize total revenue from deliveries to markets
 - Subject to:
 - Production capacity limits
 - Cannot exceed market demand
 - Mass balances throughout the network
- A2: Fix total flow volumes, determine component flows
 - Arbitrary objective function, e.g. maximize revenue
 - Subject to:
 - Gas composition at production nodes
 - Component flow out of node determined by split fractions
 - Sum of component flows equals total flow (everywhere in the network)
 - (Quality constraints)

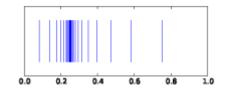
Discretization Schemes for Split Fractions

Precision vs. Computational Speed

• D1: Pre-defined split candidates e.g., uniformly distributed



- D2: Binary split formulation
 Calculate split as linear combination of ½, ¼, ...
- D3: Concentrated split candidates
 Finer discretization close to solution of single-component flow problem

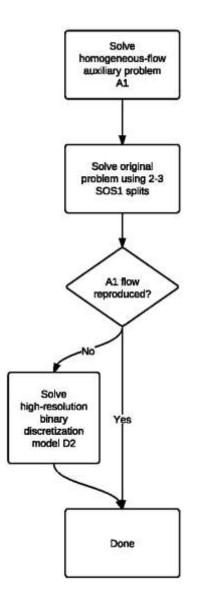


Algorithms to Solve Pooling Problems

- Combine auxiliary problems A1, A2 and discretization schemes D1 D3 in various ways
- Faster, potentially imprecise formulations vs. slower, more precise formulations
- General idea:
 - Use faster formulations to get an "estimate" of the solution
 - If this estimate is good enough \rightarrow done
 - If not \rightarrow improve solution, using available information
- For example:
 - Optimal multi-component flow pattern is similar to homogeneous flow pattern
 → global optimum of pooling problem close to homogeneous solution
 - All quality constraints are satisfied
 - \rightarrow global optimum of pooling problem equal to homogeneous solution

Hybrid Split Algorithm

- Preprocessing solve homogeneous flow problem A1
- Coarse pooling problem, test with (very) few candidate splits:
 0, split ratio from A1, 1
- Only if necessary (total flow ≠ flow from A1):
 - Solve complete pooling problem
 - Use discretization D2 (split ratio = linear combination of ½, ¼, ...)



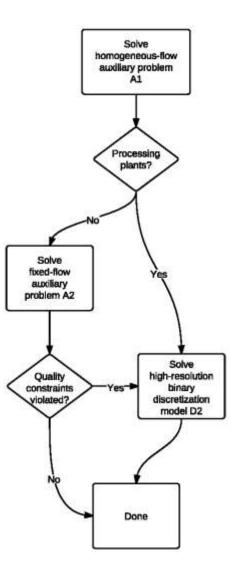
Warm Start

- Solution of homogeneous-flow problem gives upper bound on flows
 - Homogeneous flow = linear combination of component flows
 - Solution of component-flow problems cannot be better than this
- If solution of component-flow problems is "too far" from upper bound
 → may verify solution with finer discretization scheme:
 - Solve pooling problem with concentrated split scheme D3
 - Use this as warm start for solving problem with binary scheme D2

(D2 may be fine grained everywhere between 0 and 1,D3 is fine grained around split from A1, coarser elsewhere.)

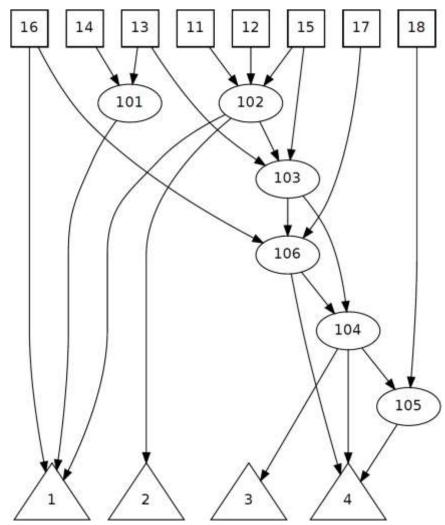
Use Simplest Possible Approach

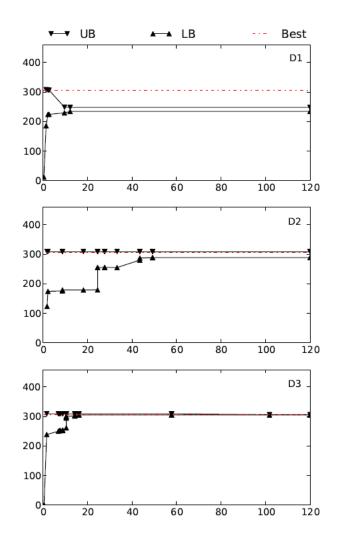
- Get initial solution from homogeneous flow problem
- Processing plants remove some component flows \rightarrow go immediately to high-resolution formulation,
 - → go immediately to high-resolution formulatio using binary discretization scheme D2 (optimal split ratios may be "everywhere")
- Else: determine component flows from homogeneous flows (fixed-flow problem A2)
- Test if quality constraints at markets hold
 - If yes: done
 - Else: solve high-resolution formulation and find new split ratios



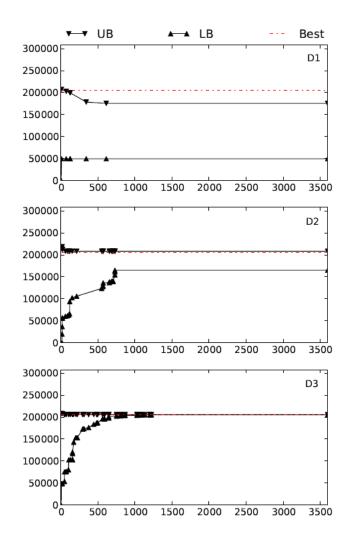
Computational results

- Evaluate solution quality for five test cases
 - Based on real industry cases from NCS
 - 3 single-period cases after 120 seconds
 - 2 large multi-period cases after 1 hour
- Also: time to reach a given gap between pre-computed estimate of optimum and best solution found
 - True global optimum (upper bound): from homogeneous-flow problem
 - Estimate for component-flow problem from very fine-grained D2, several days





(a) Case 1, over 120 seconds.



(b) Case 4, over 3600 seconds.

Thank you for your attention!

AdrianTobias.Werner@sintef.no

Lars.Hellemo@sintef.no

