Introduction	Modeling	Optimization	GANESO	Example	Conclusions

Gas Network Simulation and Optimization

Alfredo Bermúdez, Julio González-Díaz, Francisco J. González-Diéguez and Ángel M. González-Rueda

University of Santiago de Compostela and Reganosa

June 5, 2014

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Contents	5				

Introduction

2 Modeling

- Definiton
- Mathematical model
- Equations of the model

Optimization

- Optimization goals
- Constraints
- Algorithm
- **GANESO**TM
- **O** Application to the Spanish gas network
- **6** Conclusions

- The Technical System Manager of the Spanish gas network is a private company which, mainly:
 - is in charge of the physical operation of the network.
 - gives advice on network expansions based on past operation and peak day simulations.
- TSM does not have the right incentives to do these jobs efficiently.
- These biased decisions may harm other agents of the system.
- For this reason, we started a joint collaboration with our partner Reganosa LNG company in 2011.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Features	of the Spa	anish gas ne	twork		

pamon gas

- In practice, it is possible to transport gas between any two points thanks to the high number of compressor stations.
- It is also a quite meshed network, with many routing possibilities.
- Direction of flow in most pipes can vary from day to another. ٠

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
E .					

Features of the Norwegian gas network

- The Norwegian gas network looks like a tree, where the gas flows from North to South.
- Flow direction is known in advance for most of the pipes.
- As we will see this allows for a simpler resolution of the physical equations of the system.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions

MATHEMATICAL MODEL OF A GAS NETWORK

Francisco J. González-Diéguez (USC)

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Definition					
Definition					

Simulation based on a mathematical model of the physical behavior of the network in steady-state. The following elements can be modeled:

- compressor stations,
- regasification plants,
- international connections,
- virtual interconnection points,
- flow control valves,
- pressure control valves,
- closing valves,
- underground storage facilities.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Model					
Graph					

- The network is modeled as a directed graph.
- The edges represent pipes and have an associated direction.
- The Spanish network can be modeled with around 500 edges and 500 nodes.

reganosa (

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Equations for the	model				
Equatior	ns for the n	nodel			

The mathematical model can be deduced from the Navier-Stokes equations for compressible flows:

- Conservation of mass
- Conservation of linear momentum
- Conservation of energy
- and the following constitutive laws:
 - Newtonian viscous fluid
 - State equation for real gases
 - Fourier's law for the heat flow

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Equations for the	model				
Matrix s	vstem				

Two families of equations:

- For each node, conservation of mass is computed.
- For each edge, pressure loss is computed.

$$\left(\begin{array}{cc} 0 & \mathcal{A} \\ \mathcal{A}^t & 0 \end{array}\right) \left(\begin{array}{c} \mathbf{p} \\ \mathbf{q} \end{array}\right) - \left(\begin{array}{c} \mathbf{0} \\ \mathcal{F}(\mathbf{p},\mathbf{q}) \end{array}\right) = \left(\begin{array}{c} \mathbf{c} \\ \mathbf{0} \end{array}\right)$$

where

USC

- p is the pressure at the nodes,
- c is the exchanged mass flow with exterior at the nodes,
- q is the mass flow at the edges.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Equations for the	model				
Pressure	loss				

$$\mathcal{F}(p,q) = p(L)^{2} - p(0)^{2} = -\frac{\lambda(q)L}{DA^{2}} R \theta_{m} |q| qZ(p_{m},\theta_{m})$$
$$-\frac{2g}{R\theta_{m}} \frac{p_{m}^{2}}{Z(p_{m},\theta_{m})} (h(L) - h(0))$$

being

- λ is the coefficient of friction, computed with Colebrook or Weymouth.
- Z is the compressibility factor, computed with AGA-8 or SGERG-88.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Equations for the	model				
Pressure	loss				

$$\mathcal{F}(p,q) = p(L)^{2} - p(0)^{2} = -\frac{\lambda(q)L}{DA^{2}} R \theta_{m} |q| qZ(p_{m},\theta_{m})$$
$$-\frac{2g}{R\theta_{m}} \frac{p_{m}^{2}}{Z(p_{m},\theta_{m})} (h(L) - h(0))$$

being

- λ is the coefficient of friction, computed with Colebrook or Weymouth.
- Z is the compressibility factor, computed with AGA-8 or SGERG-88.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Simulator					
Simulato	or				

$$\left(\begin{array}{cc} 0 & \mathcal{A} \\ \mathcal{A}^t & 0 \end{array}\right) \left(\begin{array}{c} \mathbf{p} \\ \mathbf{q} \end{array}\right) - \left(\begin{array}{c} \mathbf{0} \\ \mathcal{F}\left(\mathbf{p},\mathbf{q}\right) \end{array}\right) = \left(\begin{array}{c} \mathbf{c} \\ \mathbf{0} \end{array}\right)$$

- These steady-state equations are solved by means of newton-like numeric algorithms.
- They are also the kernel of our steady-state simulator.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions

OPTIMIZATION OF GAS TRANSPORT NETWORKS

Francisco J. González-Diéguez (USC)

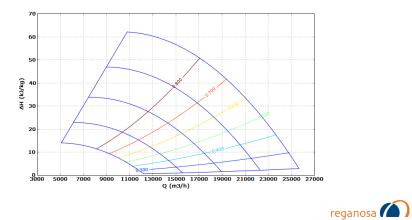
June 5, 2014 15 / 38

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Optimization goals					
Optimiza	ition goals				
opunize	From Bound				

- The optimization goals might be minimize:
 - the self-consumption in the compressor stations,
 - the boil-off gas in the regasification plants
 - the bottlenecks,
 - ...
- The variables to optimize:
 - compression ratio at the compressor stations,
 - decompression ratio on PCVs,
 - flow on the FCVs,
 - flow on the regasification plants, international connections, ...

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Constraints					
Constrain	its (I)				

The constraints of the optimization problem refer, mainly, to:


• security of supply:

- imposed flow at the exit points,
- minimum pressure at each point of the network,
- maximum pressure at each point of the network,
- capacity at each pipe of the network,
- ...

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Constraints					
Constrain	its (II)				

2 Operational ranges in the compressor stations.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Algorithm					
Algorithm	n (I)				

In order to optimize the gas transport network, we have developed a two-stage procedure:

- Disregarding some second order physical effects, a first algorithm obtains an initial solution, which is used to configure the network (compressor stations, PCVs, ...)
- Based on this configuration, a second algorithm refines the previous solution with the aid of our simulator.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Algorithm					
Algorithm	n (II)				

- Based on Sequential Linear Programming techniques.
- Based on Control theory techniques.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Algorithm					
~ ~		_			

1st: Sequential Linear Programming

- It consists in iteratively linearize the nonlinear constraints.
- Very good behavior in practice. Limit points are essentially "local optima".
- Its main characteristic is that it does local search based on bounded size steps at each iteration.
- For our purpose, it has two "limitations"
 - Binary decisions/variables are not allowed.
 - It has to be fine tuned based on several parameters.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Algorithm					
1st: Mod	ified SLP				

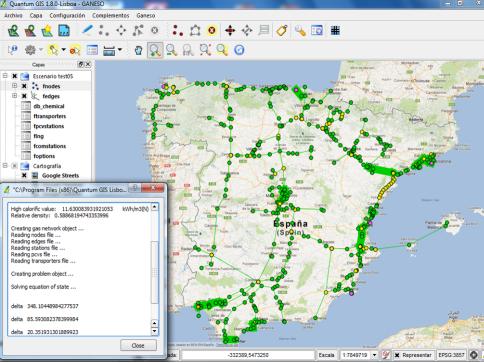
- We have developed a modified version of the SLP which avoids the limitations of classic version:
 - Binary decisions can be made.
 - Few parameters to be tuned.
- It allows unbounded size steps.
- It is more common to observe convergence problems such as cycling in our algorithm.
- Both SLP optimize all the pressures at the nodes and all the mass flows at the edges.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Algorithm					
2nd: Co	ntrol theor	V			

- It starts with a configured network.
- Unlike the modified SLP, it is not able to make decisions.
- It is applied to our simulator, which represents the physical state of the network.
- Implicit constrains: it is not necessary to introduce the pressure loss and the conservation of mass.
- Therefore, less variables to optimize.
- It spends more computational time.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions

$\mathrm{GANESO^{TM}}$


Francisco J. González-Diéguez (USC)

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Definition					

- All the mathematical models we have just presented are included in a software called GANESO.
- It stands for GAs NEtwork Simulation and Optimization.
- It is formed by a kernel (implemented in FORTRAN) and a graphical user interface.
- It is not available for purchase.
- Reganosa is continuously using GANESO for their internal operations and to analyze different operational possibilities of the system.
- The tool is rapidly improving thanks to the feedback received from them.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Graphica	al User Inte	erface			

- The graphical user interface is based on a open source project called Quantum GIS.
- A specific plug-in was developed in order to interact with the kernel.
- It allows to employ on-line cartography services, such as Google Maps and Open Street Map, and off-line cartography.
- GANESO can read and write Microsoft Excel XML files. It can also write Google Earth files.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions	
Application to the Spanish gas network						

Optimization of the Spanish gas network

Francisco J. González-Diéguez (USC)

Introduction	Modeling	Optimization	GANESO	Example	Conclusions			
Application to the Spanish gas network								
0								
Optimiza	ation prem	ISES						

- International connections and underground facilities are taken as fixed inputs.
- The optimizer has freedom to choose the distribution of flow among the regasification plants.
- The optimizer has freedom to choose how to use compressor stations, PCVs and FCVs.
- The cost function is based on the gas consumption in the compressor stations.
- Work day of January with low demand.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions		
Application to the Spanish gas network							

Usual management without optimization

Francisco J. González-Diéguez (USC)

USC

Introduction	Modeling	Optimization	GANESO	Example	Conclusions	
Application to the Spanish gas network						

Optimized management

USC

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Application to the	Spanish gas network				
D1 . 11 .	· c ci	1 A A			

Distribution of flow in the plants

[GWh/day]	No opt.	With opt.
Barcelona	131.8407	241.6383
Bilbao	113.8560	90.6997
Cartagena	85.3920	38.2229
Huelva	170.7840	83.6432
Reganosa	114.1571	106.4408
Sagunto	56.9280	112.3129

Before Vs After:

- From South = Cartagena + Huelva = -134.3099 GWh/d
- From North = Reganosa + Barcelona + Bilbao = +78.9250 GWh/d

Introduction	Modeling	Optimization	GANESO	Example	Conclusions		
Application to the Spanish gas network							

Compression cost in the stations

[GWh/day] No opt. With opt.						
No opt.	With opt.					
0.2909	-					
-	-					
0.2650	0.1587					
-	-					
-	-					
-	-					
-	-					
-	-					
-	-					
-	-					
-	-					
-	-					
-	-					
-	-					
-	-					
0.2229	-					
-	-					
0.1516	-					
-	-					
0.9304	0.1587					
	0.2909 - 0.2650 - - - - - - - - - - - - -					

reganosa 🍊 🕽

Introduction	Modeling	Optimization	GANESO	Example	Conclusions		
Application to the Spanish gas network							
Remarks							

- GANESO has optimized the distribution of flow among the regasification plants and the use of compressor stations.
- Based on this management, the cost could be up to 17 % of the usual one.
- It took 5-10 minutes on a desktop computer.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions

CONCLUSIONS

Francisco J. González-Diéguez (USC)

reganosa 🍙

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Conclusi	ons				

- We have developed new algorithms to optimize gas transport network problems, based on a two-stage procedure.
- In the first stage, based on Sequential Linear Programming techniques, an initial solution is obtained.
- Then, this initial solution is refined using a Control Theory approach.
- Furthermore, the above algorithms have been implemented in GANESO, which has proved useful for the company who funded this research.

Introduction	Modeling	Optimization	GANESO	Example	Conclusions
Ongoing	work				

We are developing:

- A transient model for simulation and optimization.
- In order to help with the decision making regarding network expansions, we are enhancing GANESO with stochastic programming functionalities.
- A parallel computing version of GANESO.
- A system tariff module to analyze the guidelines of EU regarding the entry-exit tariffs.
- An additional module to compute the gas loss allocation.

TUSEN TAKK

Our financial supporters:

