TGTC 2014-06-05

Natural Gas Infrastructure Design

Lars Hellemo Kjetil Midthun Adrian Werner Marte Fodstad Asgeir Tomasgard

SINTEF Applied Economics

Background/Objective

- Design or Redesign of NG Infrastructure:
 - Field Development, topside/subsea
 - Processing Facilities, onshore/offshore
 - Compression Facilities, onshore/offshore
 - Pipelines
- When and Where
 - Which fields at what time
 - Dimensioning (pipeline, processing)

Input data

- Fields:
 - CAPEX
 - OPEX
 - Production profile
 - Distances
 - Time window
- Pipelines:
 - CAPEX
 - OPEX
 - Length
 - Capacity
- Processing facilities
 - CAPEX
 - OPEX
 - Capacity
- Markets:
 - Price
 - Demand

Complexity

- Combinatorial explosion:
 - 1 field : 40
 - 4 technologies
 - 10-years start window
 - 2 fields: 1600
 - 10 fields: 40^10 ~= 10^16
- Production from fields is flexible
- Trade-Off:
 - Increase capacity vs. delay production

Optimization Model

General Mixed Integer Linear Program:

$$\min c^{\top} x + d^{\top} y$$

s.t. $Ax + By \leq b$
 $x \in \mathbb{R}^{n_x}_+$
 $y \in \mathbb{Z}^{n_y}_+$

Solve using commercial software or specialized algorithms

Optimization Model

Maximize (expected) NPV:

$$NPV = \sum_{s \in S} \sum_{t \in T} Prob_{ts} \delta_t (Rev_{ts} - Cost_{ts})$$

New projects may be started (once) during defined time windows:

$$\sum_{t = Start_p^e \dots Start_p^l} start_{pts} \leq 1$$

Etc..

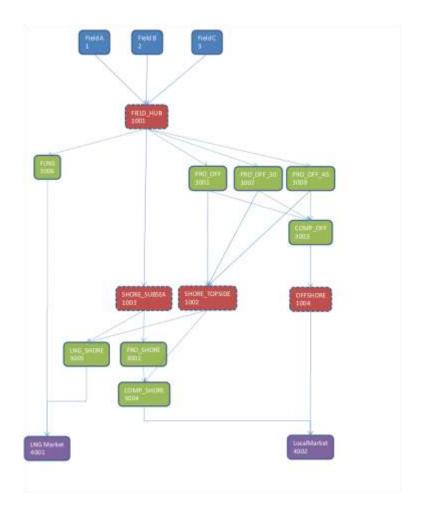
Main constraints

- Costs incurred from
 - Investments (CAPEX)
 - Production (OPEX)
- Revenue stems from sales/delivery to Market
 - Price
 - Demand
- Satisfy physical and logical constraints:
 - Production capacity
 - May only transport using links that are in production

Novelty/Improvement

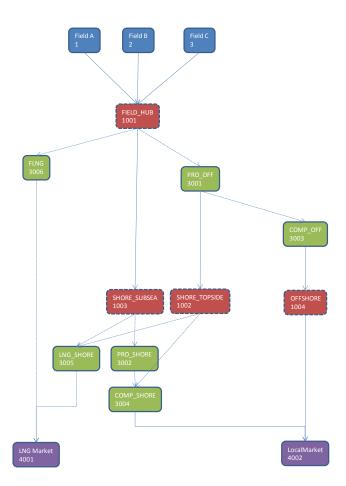
- Improved model formulation
 - Continuous Capacity Selection
 - Tighter Formulation
 - Use fewer (costly) binary variables
- GUI Prototype (covering subset of model)
 - Excel Interface for input/output

Continuous Capacity Selection

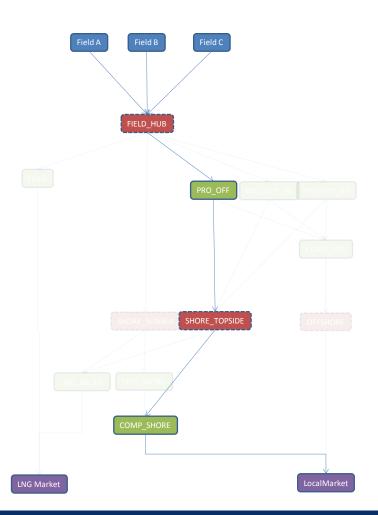

• Continuous scaling, see e.g. Moore (1959)

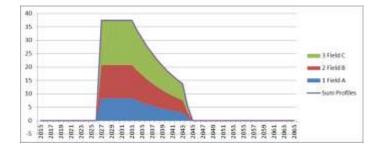
$$C_1 = C_0 \left(\frac{X_1}{X_0}\right)^{2/3}$$

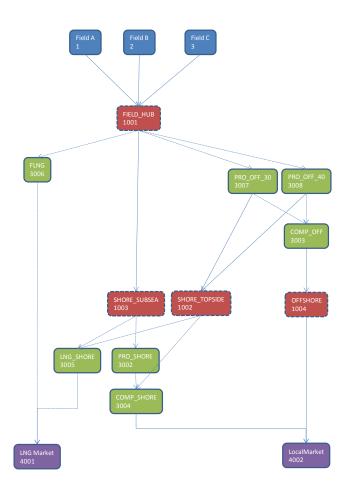
- Fewer binary variables
- Practical advantages
 - easier to set up
 - less need to anticipate solutions
- Matching capacities

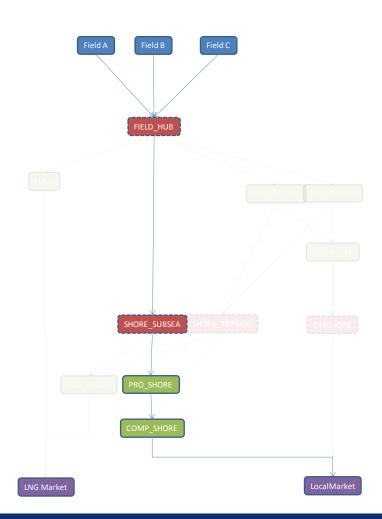


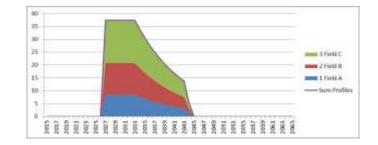
Example

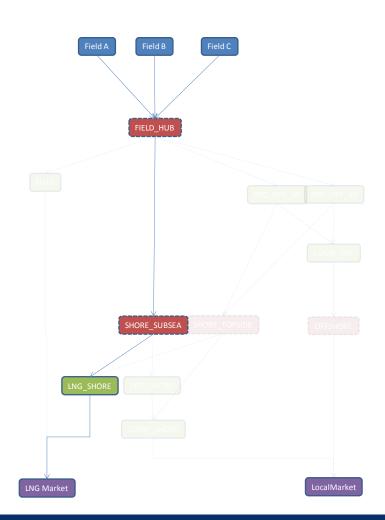


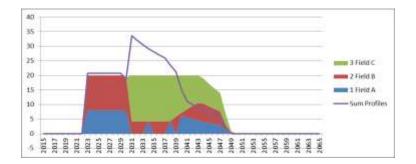

Candidate Projects: Continuous Offshore Capacity


Continuous Offshore Capacity




Candidate Projects: Fixed Offshore Production


Fixed Offshore Capacity



LNG | Premium 0.75 NOK/SM3

Experience From Analyses

- More thorough and consistent analysis
- Explore solutions to understand problem
- Sensitivities
- Difficult/Impossible to perform manually/spreadsheet
- Manage level of detail

