

TGTC-3 Date: 05.06.2014

Magnus Eikens (Connect LNG) David Berstad (SINTEF Energy Research)

- 1. Small-Scale LNG Market Introduction
- 2. The Connect LNG technology (the UBS)
- 3. Preliminary results from Sintef Energy Research

ENABLING LNG TERMINALS

3rd Trondheim Gas Technology Conference, 5th of June 2014

TRADING ROUTE

For illustration purposes only. Not necessarily actual trading routes.

Small-Scale

 3^{rd} Trondheim Gas Technology Conference, 5^{th} of June 2014

TOO LONG PAYBACK TIME

TOO LONG CONSTRUCTION TIME

Available Solution: Jetty or dredging of large seabed volumes

3rd Trondheim Gas Technology Conference, 5th of June 2014

UNIVERSAL BUOYANCY SYSTEM (UBS)

3rd Trondheim Gas Technology Conference, 5th of June 2014

FLEXIBLE TERMINALS

- Designed for in-shore weather conditions
- System stored near shore when not in operation

Pressurized Tanks _ (1000-15.000 m³)

LNG Carrier (1000-30.000 m³)

- Mobile: can be Relocated if change in market
- Combined with IMO-C tanks, even higher mobility
- Low CAPEX compared to alternative
- Up to 6 x times faster construction time

FOCUS ON HYDRODYNAMIC SIMULATIONS

Three Model Tests

MODEL TEST 1 UBS V 1.0

MODEL TEST 2 HOSE CONFIGURATION

MODEL TEST 3 ATTACHMENT SYSTEM

MC-LAB MARINTEK, OCTOBER 2012

OCEAN BASIN MARINTEK, MAY 2013

MC-LAB, MARINTEK, FEBRUARY 2014

CRYOGENIC HOSE TECHNOLOGIES

Third party expert opinion:

Project proposal

SINTEF

 MIRTER Humple TM MIRTER Humple TM Miristerse
Parallelister (TML Tappers MIR PARA Verlaghensen-MI TERECOR Humple And Tappers MI H

Theoretical boiloff calculations for Connect

٧G	5	Universal	Buoyancy	system	

VOISION 1		54/10 2014-03-12
PROSPECTIVE CLEWE		CLAINTS N.F. /CONTACT PERSON
Connect UNG		Magrus Elvers
PROJECTING		NO OF FROM (APPENDICE).
÷2		0 + appendicati
PROPOSALINO.	WALK UNTE	GASSIFICATION
	2014-02-23	Reutricted

ODUCTIVE

Through this project, SP/TEF will develop stationary/standy-state calculation models for pressure drop and heat flow for the UNG heat in Connect LNG's Universal Subyancy System (USS).

The results and scope of the project is to be considered as an expert opinion related to the UBS concept as is, rather than a full third-party wrification of the concept.

The ansays will conclude in a technical report documenting the methodology used for pressure drop, heat inteak and bolioff calculations. A PRO/II simulation model will also be dollarend.

<u>Hose Alternatives</u> Vacuum Insulated hoses Composite Hoses Cryogel Hoses

- a) How much boil-off will the UBS add during LNG discharge/loading?
- b) What will the pressure loss through the UBS be?
- c) What is the optimal flow-rate and inner diameter to minimize BOG?

