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Background - ”A green sea” -project

e 43% of the remaining gas resources contain CO, and H,S (world energy

outlook, 2008)

High Hz5 only High COz only | High HzS and COz Total

% of total

(tcm) {tcm) (tcm) {tcm) [esenes
Mexico & Latin America 0,3 11 03 1.7 21
Europe 0,1 0,7 03 1.1 19
Former Soviet Union 0.8 101 73 18,2 34
Africa 0,0 0,5 0.5 1,0 8
Middle East 26 0.4 409 440 60
Asia-Pacific 0,3 4.4 2.3 T 46
World 4,2 17,2 51,6 731 43

World proven sour-gas reserves, 2006. Note: Excludes North America. High H,S 15 more than 100 ppm.  high CO, 1
more than 2%. Source: World Energy Outlook, 2008.
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Background - “A green sea”-project

« Overall objective is to identify, mature and evaluate technologies and
concepts for acid gas removal

— Absorption, Adsorption, Membranes, Cryogenic methods
« Focus on offshore sweetening of natural gas
— High pressure
— Small *footprint”
— Captured CO, can be used for increased oil recovery (IOR)
— Pipe line specification (2.5% CO,) and LNG specification (approx. 50ppm CO,)

« ldentify new solvent systems for natural gas sweetening that are
environmentally friendly.

» Project partners
— Statoil, Gassco, Petrobras and the Research Council of Norway
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Classification categories and criteria of chemicals used
offshore as stated by the Norwegian Activities Regulation
(PSA 2010)

Category Criteria — ecotoxXicity test Actions
* The priority list from Storting White Paper No. 21 Mot
* (2004-2005). discharged

+ The OSPAR List of Chemicals for Priority Action
|Substances that:
*» Have biodegradability of BOD2S8 < 20% and
bicaccummulation potential of Log Pow = 5.
* Have biodegradability of BOD28 < 20% and are
toxic (LCS50 or ECS50 = 10mg/1)
* Are harmful in a mutagenic or reproductive manner.
+ Non-organic substances that have acute toxXicity Phased out or
ECS50 or LC50 =< 1 mg/l replaced
* Organic substances that have biodegradability
BOD28 < 20%
* Organic substances that meet two of the three
following criteria:
o  Biodegradability BOD28 << 60%a
< Bioaccumulation potential Log Pow == 3 and
molecular weight < 700 or
< Acute toxicity LCS0 or EC50 == 10 mg/1

* Substances that are not defined as red or black and. Accepted

*  Substance which are not on the PLONOR. list

* Chemicals expected to have WO environmental Testing not
effects required

- PLONOR list
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Dimethylmonoethanolamine - DMMEA

_ _ _ HaC™ ' ~""OH
DMMEA is a tertiary amine

Chemical Sfructure of DIMIMEA

DMMEA is a stronger base than MDEA (pKa of 9.2 vs 8.5 for MDEA)
It is a smaller molecule than MDEA (DMMEA: 89.14 g/mol, MDEA: 119.16 g/mol)

DMMEA is classified as a yellow chemical, (Eide-Haugmo, PhD thesis 2011)
— Readily biodegradeable
— Low bioaccumulation potential
— Not toxic

It showed lower thermal degradation after 5 weeks at 135°C with a loading of 0.5 mol
CO,/mol amine than MDEA (Eide-Haugmo, PhD thesis 2011)
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Solvent screening - method

Rapid screening apparatus

LabView Data A €

Acquisition System

eAbsorption at 40°C

IR CO,
Analyzer

eDesorption at 80°C

e Atmospheric pressure
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Solvent screening — systems tested

Component 1 Component 2
System
Name C, mol/kg-solution Name C, mol/kg-solution
1 MDEA 4.2 - -
2 DMMEA 5.6 - -
3 DMMEA 4.2 ; ]
4 MDEA 4.2 MEA 0.35
5 DMMEA 4.2 MEA 0.35
6 MDEA 4.2 Piperazine | 0.35
7 DMMEA 4.2 Piperazine | 0.35
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Absorption rate, mol m~ min

Solvent screening - results

30

5M MEA (June 2011)

4.2m' (50 wt %) MDEA

5.6m' (50 wt %) DMMEA

4.2m' DMMEA

4.2m' MDEA+0.35m' MEA

4.2m' DMMEA+0.35m'
MEA

4.2m' MDEA+0.35m' Pz

4.2m' DMMEA+0.35m"' Pz

o 1 1 1 1 1
0,00 0,10 0,20 0,30 0,40 0,50 0,60
CO, loading, mol-CO,/mol-Am
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vent screening - results
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High pressure solvent screening - results

50% (4.2m') MDEA_5
- 50% (5.6m') DMMEA_2
4.2m' DMMEA-0.35m' Pz

40

-2 KTAU_1
| w—2m' KTAU_2 System Loading | P.q, kPa

50% MDEA 0.257 29.086
¢ ” 50% DMMEA 0.203 5.065
'g‘ 4.2m' DMMEA+0.35m' Pz | 0.229 12.923
g 30 2m' Ktau_1 0.116 8.707
% \ 2m' Ktau_2 0.280 241.16
A

N
W
Y
{

rd

20

0 1000 2000 3000 4000 5000 6000 7000
Time, sec

Absorption curves from the high pressure screening experiments. Absorption

temperature 400C, 50 % CO2 — 50 % CH4 gas mixture
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High pressure VLE — method
e Pressure region
- O—ZOMia

e Temperature region
— (-20) - 180°C

e Equilibrium cell

— Sapphire tube equilibrium cell (approx.
32cm3)

— Possibility for adding other impurities
(mercaptans)

e Sample analysis

— Online gas chromotograph (GC)
e Vapor phase and gas phase
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High pressure VLE

-

Vapor

~

——

Mole fractions determined using gas
chromatography. Partial pressures calculated
from Daltons law.

Difficult to measure the water content in the
vapor phase using GC. It is therefore neglected.

Mole fractions determined using gas
chromatography.

The water/amine ratio is assumed to be
constant.

Moles of amine in the sample is calculated
from the GC measurement of the water
content in the sample.
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Experimental procedure

Filling the cell with solvent and increasing temperature

Adding CO, to the cell

At equilibrium, both phases are sampled
2

Pressure is further increased with methane

g W
= 150bar
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Methane solubility in water — verifying
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e experimental method

- A
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- * . |
- re 4 # H20 40C (this work)

! 4 H20 40C (Carroll, 1998)
Py » 3 A H20 38C (Culberson 1951) —
s’

T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

x CH4 * 103, mol frac

Validity of the experimental
set-up

Slightly lower solubility of
methane from this work

Methane solubility results
sensitive towards the GC
calibration curve of water
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Equilibrium CO, partial pressures

70
.. Results from this work follow the
60 same trend as seen in the data
from Kuranov et al.
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Equilibrium CO, partial pressures

70
Data at 80C are located between
60 data from Jou at 70C and Kuranov
at 100C.
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Equilibrium CO, partial pressures
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At higher temperatures the
effects of concentration becomes

less pronounced as seen when
our data is compared with data

from Kuranov et al.

B This work - MDEA 50wt% 120C

Kuranov (1996) - MDEA 32wt% 120C
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Equilibrium CO, partial pressures —

MDEA vs DMMEA
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o The physical solubility of CO, is
4 higher in mixtures of DMMEA-
- l.’ water than in MDEA-water at the
g same molar concentration.
2 g
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Equilibrium CO, partial pressures —
MDEA vs DMMEA
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‘& The physical solubility of CO, is
higher in mixtures of DMMEA-
water than in MDEA-water at the

same molar concentration.

A
A This work - MDEA 50wt% 80C
This work - DMMEA 38wt% 80C
A
A
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Loading CO2

SINTEF | (@) nuaim,

Science and Technology



How does the ac
affect the CO, lic
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dition of methane
uid loading?
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How does the ac

affect the CO, lic

dition of methane
uid loading?

Methane is added to the cell.
. :
o — Increasing the total pressure and
oe * —————— causing methane to dissolve in
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How does the ac

dition of methane
uid loading?

affect the CO, lic

The increased pressure causes the
equilibrium curve to shift to the

left.

A This work - MDEA 50wt% 40C, P(CH4)
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Is this behaviour visible in other

experiments?
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It is visible in all tests in
various degrees.
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Is this behaviour visible in other
experiments?

160
A Increasing the total pressure by
140 adding methane.
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Is this behaviour visible in other
experiments?
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SINTEF
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X CH *10°

What is causing the effect?

Presence of Methane in the liquid phase?

100.0
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0.0

0 5 10 15 20 25

Total pressure, Mpa

Solubility of methane in pure MDEA (Jou,
2006)
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The solubility of methane in water and
pure MDEA is low
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What is causing the effect?

Presence of Methane in the liquid?
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Mole fraction of CH4 in liquid phase

Dissolved hydrocarbons in the liquid phase will
influence the dielectric constant (measure of
polarity) of the amine.

The mole fraction of methane in the liquid
phase is low.
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What is causing the effect?
The increased pressure?

The Poynting correction

The vapor-liquid equilibrium of CO, can be calculated by equalizing the fugacity values
of both phases

L
fc\tlza :fcca

m@,%@:%)
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What is causing the effect?
The increased pressure?

The Poynting correction

M@Eap%)
)

Constant
Poynting correctlon
(molar volume of CO, in the liquid)
Pco, = fugacity coefficient ‘
= vapor mole fraction S
Yeo, P Reduction in liquid CO, :
P = total pressure . _ Increases with pressure
. - concentration
Yeo, = activity coefficient

H

Mo, = Molality

co, = Henry constant
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Conclusion

e DMMEA seems to be a faster solvent than MDEA

e The solubility of methane in the amine solvents is
low.

* There is a reduction in the liquid phase CO, at
higher pressures for MDEA and to some degree

DMMEA.

e The systems will be modeled with the electrolyte-
NRTL equation.
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