

CO₂ Removal from High Pressure Natural Gas Using a Novel Fixed-site-carrier Membrane

Xuezhong He and May-Britt Hägg

Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU)

Outline of presentation

- Background
- Membrane preparation and testing
 - Large membrane preparation
 - Module design and high pressure gas permeation testing
- Challenges for up-scaling
- Techno-economic feasibility analysis
 - Process simulation
 - Economic feasibility analysis

Natural gas sweetening

Natural gas (NG) is becoming one of the most attractive growing fuels for world primary energy consumption. However, the raw natural gas usually contains considerable amount of CO_2 which should be removed to meet the natural gas network grid specifications

- Amine absorption is the state-of-the-art technology
- Membrane can reduce the environmental impacts and operational costs, has been commercially used for this application about 25 years
- Commercial membranes are made from cellulose acetate (CA, spiral-wound), or polyimides (PI, hollow fibers)

Commercial membranes for natural gas sweetening

Membrane	Material	Company	Module
Separex TM	Cellulose acetate	Honeywell's UOP	Spiral wound
Cynara®	Cellulose acetate	NATCO	Hollow fiber
Prism [®]	Polysulfone	Air Products	Hollow fiber
Cytop	Perfluoropolymers	MTR	-
Medal	Polyimide	Air Liquide	Hollow fiber

He X, Yu Q, Hägg M-B. CO₂ Capture. In: Hoek EMV, Tarabara VV, eds. Encyclopedia of Membrane Science and Technology: John Wiley & Sons, Inc. 2013

Challenges for polymer membranes

- Low CH₄ loss (<2%): Good CO₂ / CH₄ selectivity
- Smaller membrane area: High CO₂ flux
- Tolerant to high operating pressure (up to 80bar)
- Durable to H_2S , HHC, TEG, MEG and water
- Easy to fabricate, operate, maintain
- High operation stability and long lifetime

Potential strategies

- Cross-linking of the polymer materials
- Adding inorganic nanoparticles
- Optimization of membrane preparation conditions
- Optimization of process operating conditions

Natural Gas Processing by the use of New Membrane Materials (NaGaMa), 2011-2014

- Potential improvement of the membrane performance compared to the commercial membranes, including the selectivity and permeance
- The novel fixed-site-carrier (FSC) membranes might have a potential to reduce the pre-treatment cost
- Tolerant to H_2S , and most likely will be removed together with CO_2

The main tasks

- Development of flat sheet FSC membranes (lab- and small pilot-scale)
- High pressure (up to 80bar) gas permeation testing
- \circ Durability testing, exposure to H₂S, TEG, MEG, and HHC
- Fabrication of hollow fiber FSC membranes
- Techno-economic feasibility analysis

Nanoparticles reinforced PVAm /PVA blend fixedsite-carrier (FSC) membranes

- Cross-linked PVAm/PVA blend (heat treatment)
- Compatible polymers and nanoparticles (carbon nanotubes)
- Composite membranes (coating selective layer on a support)
- Giving desired properties (high permeance and selectivity)

CNTs/Polymer

www.ntnu.no

PVAm/PVA blend polymer framework

Transport mechanism of FSC membranes

• Water is crucial for CO₂ transport through the amino-based FSC membranes

Challenging to achieve a high water content in a high pressure feed gas

www.ntnu.no

Membrane material design

• Materials

Polysulfone (PSf) UF membranes, MWCO, 20K Polyvinylamine (PVAm, MW 340,000) Polyvinylalcohol (PVA, MW 72,000) Carbon nanotubes, CNTs (D/L, 15 nm / 3 μm)

• Synthetic mixed gas

10% CO₂ / 90% CH₄ 50% CO₂ / 50% CH₄

Membrane preparation

Coating

CNTs/PVAm/PVA solution

PSf 20K flat-sheet

30cm×30cm

High pressure module and permeation rig

Design pressure up to 100 bar

Investigation of process operating parameters - Feed pressure & feed composition

Membrane performance	Feed CO ₂	Feed pressure, bar			
	composition	10	20	30	40
CO_2 permeance, m ³ (STP) / (m ² .h.bar) *	10%	0.218	0.162	0.113	0.084
	50%	0.143	0.088	0.055	0.033
CO ₂ / CH ₄ selectivity	10%	34.7	27.4	22.0	17.9
	50%	28.0	24.6	18.2	11.0

*: simulation basis

Membrane area: 110 cm² Tested at 30 °C with a feed flow 3000 Nml/min, no sweep gas

Investigation of process operating parameters - Temperature

Higher temperature, higher water vapor content in a gas stream

Membrane area: 110 cm², 10% CO₂/90% CH₄

Tested at 30°C and 10bar with a feed flow 3000 Nml/min, no sweep gas

Innovation and Creativity

Investigation of process operating parameters - Feed flow & stage-cut

- CH_4 purity can reach 96% at a high stage-cut (15%), but CH_4 loss is high, which needs to be partly recovered from the permeate stream using a second stage membrane unit
- CO₂ purity can only achieve 50-60%, thus, further purification is required for storage or re-injection back to gas wells

Membrane area: 330 cm², tested at 30 °C and 30bar, no sweep gas, $10\% CO_2/90\% CH_4$

www.ntnu.no

Challenges for up-scaling

	Parameters	Lab-scale	Industrial scale	Challenges
	Module	Plate-and- frame / low packing density module	Spiral wound /high packing density module	Good flow pattern/ high performance
222	Impurities	No/less	Complex	Durability/ high performance
-	Testing period	Short (hours-days)	Long (months-years)	Long lifetime/ low replacement cost
	Driving force	Pressurized from gas bottles	Compressor/blower /vacuum pump	Low capital and operating cost
5	Membrane cost	-	low	Low capital cost
	Membrane Stage	Single/two	Two-/multi-	High CH ₄ purity
	Stage-cut	Very low (e.g., <1 %)	High (>15-20 %)	High CO ₂ capture ratio
	Recycling	No	Yes	Low methane loss

From flat-sheet to Hollow fibers

Long-term static durability test

Exposed to 1.02 % H_2S , 10.0 % CO_2 and balance CH_4 at 10 bar and ca.60 °C for 3360 hours (20 weeks)

Dynamic durability test

0.5% iso-butane, 0.05% n-butane, 10% CO_2 and bal. CH_4 400 Nml/min, 30 bars, 30 °C, 6 days

The importance of process simulation

Process simulation and feasibility analysis

Process design

(a) Single stage membrane system

 CH_4 purity, >96% CH_4 loss is high

(b) Two stages related to Permeate- low feed CO2 concentration

CH₄ purity, >96% CH₄ loss is low, <2% High CO₂ purity

Simulation basis

Process operating parameter	value	Separation requirement	value
Feed flow (Nm ³ /h)	5E+5	CH ₄ purity, %	>96
Feed CO ₂ composition	10%	CH ₄ losses, %	<2
1 st stage Feed pressure, bar	40	CO ₂ purity, %	>90
2 nd stage Feed pressure, bar	10~40, optimized	CO_2 compression [*] , bar	110
Permeate pressure, bar	1		
Feed temperature, ° C	30		
CO_2 and CH_4 permeance	Experimental data		

*: compress to 75bar and pump to 110bar

Process simulation

- HYSYS simulation integrated with ChemBrane unit (developed by Memfo group at NTNU)
- Counter-current configuration
- Feed pressure of the 2nd stage is optimized on the basis of cost minimization

Process optimization-2nd stage feed pressure

- Specific power consumption increases with the 2nd stage feed pressure
- Increase of driving force may decrease the required membrane area
- Optimization based on cost estimation

Cost estimation model

Category	Parameter	Value	
Capital expenditure (CAPEX)	Membrane skid cost (C _{BM, M})	35 \$/m ²	
	Compressor, pump cost (C _{BM,i})	CAPCOST 2012 §	
	Total capital cost (C _{TM})	$C_{TM} = 1.18 \sum_{i=1}^{n} C_{BM,i}$	
Annual operating expenditure	Labor cost (LC)	15 \$/hr	
(OPEX)	Electricity cost (EC)	0.07 \$/kWh	
	OPEX	LC + EC	
Annual capital related cost (CRC)#	$0.2 imes C_{TM}$		
NG sweetening cost*	(CRC+OPEX) / annual sweet NG production, \$/m ³ sweet NG		
Other assumptions	Membrane lifetime	5 year	
	Project lifetime	25 year	
	Operating time	7500 hrs/year	
	Compressor and pump efficiency	85%	

- #: Covering depreciation, interest, and maintenance;
- *: CH₄ losses cost is not included

§: Turton R., et al., Analysis, Synthesis, and Design of Chemical Processes, Fourth Edition, Pearson Education, Upper Saddle River, NJ, 2013

Economic feasibility analysis

Parameters	Simulation results		
Sweet NG productivity, Nm ³ /h	4.67E+05	4.57E+5	
CH ₄ purity in sweet NG, %	96.08	98.02	
CH ₄ losses, %	0.35	0.54	
CO ₂ purity, %	95.01	94.41	
CO ₂ recovery, %	63.65	81.75	
Specific power consumption, kWh/Nm ³ sweet NG	3.63E-02	5.62E-2	
Total membrane area, m ²	2.62E+05	4.36E+5	
NG sweetening cost, \$/Nm ³ sweet NG	5.73E-03	7.95E-3	

A typical amine absorption: 6.4E-3 \$/Nm³ sweet NG produced[§] 10bar of 2nd stage feed pressure is used

Innovation and Creativity

[§]: Peters L, et al., Chem Eng J. 2011;172(2–3):952-60

Summary

- The developed FSC membranes show an good separation performance for CO_2/CH_4 separation at high pressure, and relatively good durability exposed to the impurities of H_2S , HHC
- Experimental results shows that single stage membrane system cannot achieve a high methane purity and low methane loss simultaneously. Two- or multi-stage system may be needed
- HYSYS simulation results showed that developed FSC membranes could be a promising candidate for CO_2 removal from high pressure natura gas sweetening

Thank you for your attention!

Acknowledgements:

Det skapende universitet

Dr. M. Washim UddinDr. Maria Teresa Guzman GutierrezDr. Taek-Joong Kim (Sintef)Dr. Marius Sandru (Sintef)

