Optimization of a Single Expander LNG Process

Bjørn Austbø and Truls Gundersen Department of Energy and Process Engineering Norwegian University of Science and Technology (NTNU)

3rd Trondheim Gas Technology Conference4-5 June 2014

Single expander LNG process

Outline

- Motivation
- Problem formulation
- Simplified model
- Rigorous model
- Comparison
- Conclusions

Outline

- Motivation
- Problem formulation
- Simplified model
- Rigorous model
- Comparison
- Conclusions

Motivation – floating LNG

- Criteria for selection of liquefaction technology (Tangen and Mølnvik, 2009; Castillo and Dorao, 2010):
 - Profitability
 - Energy efficiency
 - Environmental impact
 - Safety
 - Operability
 - Compactness
 - Equipment count
 - Motion impact
- Expander processes an interesting alternative

Motivation – expander processes

- Remeljej and Hoadley (2006) performed an exergy analysis of a dual expander process for natural gas liquefaction using the Peng-Robinson equation of state for modelling
- Shah and Hoadley (2007) proposed a shaftwork targeting method for expander processes with applications in natural gas liquefaction
- Marmolejo-Correa and Gundersen (2013) used an exergy diagram for targeting and design of a single expander process assuming ideal gas behaviour

Motivation

 Is a perfect gas model accurate for design and optimization of a single expander process for natural gas liquefaction?

Outline

- Motivation
- Problem formulation
- Simplified model
- Rigorous model
- Comparison
- Conclusions

• Optimization problem:

$$\begin{split} \min_{\mathbf{x}} & \dot{W}_{\mathsf{NET}}\left(\mathbf{x}\right) = \dot{W}_{\mathsf{COMP}}\left(\mathbf{x}\right) - \dot{W}_{\mathsf{EXP}}\left(\mathbf{x}\right) \\ \text{s.t.} & \Delta T_{\mathsf{HX}}\left(\mathbf{x}\right) \geq \Delta T_{\mathsf{min}} \end{split}$$

- Constant isentropic efficiency:
 - Compressor: $\eta_{s,COMP}$
 - Expander: $\eta_{\rm s,EXP}$
- Refrigerant: nitrogen

• Process specifications – natural gas:

Variable	Unit	Value
Flow rate	kg/s	1
Feed pressure	bar	55
Feed temperature	K	293.15
Product temperature	K	115.00
Molar composition:		
Methane	-	0.897
Ethane	-	0.055
Propane	-	0.018
N-butane	-	0.002
Nitrogen	-	0.028

- Uniform heat exchanger exit temperature ($T_4 = T_{II}$)
- Given cooler temperature ($T_3 = T_1$)
- Two heat exchanger energy balances
- Compressor equation
- Expander equation

Four degrees of freedom for design optimization

Simplified model:

- Perfect gas model (ideal gas + constant c_{p,R})
- Mean natural gas heat capacity (*m*·*c*_p)_{NG}
- Solved analytically

Rigorous model:

- Soave-Redlich-Kwong equation of state
- Process modelling: Aspen HYSYS[®] (Aspen Technology, Inc.)
- Optimization: Sequential quadratic programming, NLPQLP (Schittkowski, 2006)

Outline

- Motivation
- Problem formulation
- Simplified model
- Rigorous model
- Comparison
- Conclusions

DNTNU

- Decision variables:
 - Stage temperature
 - Cold end temperature difference
 - Warm end temperature difference
 - Pressure level
 (does not influence power consumption)

 $T_{\rm II}$ $\Delta T_{\rm cold} = T_{\rm III} - T_5$ $\Delta T_{\rm warm} = T_{\rm I} - T_1$

 $p_{\rm L} \, {\rm or} \, p_{\rm H}$

- Calculations:
 - Energy balance for the heat transfer process
 - Equation for the compression process
 - Equation for the expansion process
 - Definition of isentropic efficiency
 - Equation for entropy change for ideal gas
 - \rightarrow Net power consumption as a function of the decision variables:

$$\dot{W}_{\text{NET}} = \dot{W}_{\text{COMP}} - \dot{W}_{\text{EXP}} = \dot{W}_{\text{NET}} \left(\mathcal{T}_{\text{II}}, \Delta \mathcal{T}_{\text{cold}}, \Delta \mathcal{T}_{\text{warm}} \right)$$

- Case study:
 - $(\dot{m}c_p)_{NG} = 3.5 \text{ kJ/K}$
 - $c_{p,R} = 1 \text{ kJ/kgK}$
 - $T_1 = 300 \text{ K}$
 - $T_{III} = 115 \text{ K}$
 - $-\eta_{s,COMP} = \eta_{s,COMP} = 0.8$
 - $-\Delta T_{cold} = 4 \text{ K}$
 - $-\Delta T_{warm} = 8K$
- Studying the influence of the stage temperature T_{II}

• Flow rate / pressure ratio

• Net power consumption:

- Optimal cold end temperature difference ΔT_{cold}^* :
 - From thermodynamics:

 $\Delta T_{\rm cold}^* = \Delta T_{\rm min}$

- Optimal warm end temperature difference ΔT_{warm}^* :
 - Locating extrema (isentropic efficiency sufficiently high):

$$\frac{d\dot{W}_{\rm NET}}{d(\Delta T_{\rm warm}^{*})} = 0$$
$$\Rightarrow \Delta T_{\rm warm}^{*} = \Delta T_{\rm min}$$

- Optimal stage temperature T_{II}^* :
 - Locating extrema:

$$\frac{\mathrm{d}\dot{W}_{\rm NET}}{\mathrm{d}T_{\rm II}^{*}}=0$$

- Optimal stage temperature $T_{\rm II}^{*}$ as a function of $T_{\rm I}$, $T_{\rm III}$, $\Delta T_{\rm warm}$, $\Delta T_{\rm cold}$, $\eta_{s,\rm COMP}$, $\eta_{s,\rm EXP}$

- LNG case study
 - $-T_1 = T_3 = 293.15 \text{ K}$
 - $T_{III} = 115.00 \text{ K}$
 - $-\eta_{s,COMP} = \eta_{s,COMP} = \eta_s$
 - $-\Delta T_{cold} = \Delta T_{warm} = \Delta T_{min}$
- Optimal stage temperature plotted for different values of $\eta_{\rm s}$ and $\Delta T_{\rm min}$

• Optimal stage temperature T_{\parallel}^* :

• Net power consumption at T_{II}^* :

Outline

- Motivation
- Problem formulation
- Simplified model
- Rigorous model
- Comparison
- Conclusions

- Decision variables:
 - Refrigerant flow rate \dot{m}_{R}
 - Stage temperature
 - Pressure ratio $p_{\rm H}/p_{\rm L}$
 - Low pressure level $p_{\rm L}$

(Alternatively $p_{\rm H}$)

- Pressure levels: 1 bar $\leq p \leq$ 120 bar

 $T_{\rm II}$

• Optimization results:

ΔT _{min}	η _s	Ŵ	T_{stage}	Μ _R	p_L	р _Н	p _H /p∟	ΔT_{cold}	ΔT_{warm}
(K)	(-)	(kW)	(K)	(kg/s)	(bar)	(bar)	(-)	(K)	(K)
1.0	0.70	3845.5	130.5	52.6	1	1.92	1.92	1.0	1.0
1.0	0.80	2654.6	135.0	40.2	1	2.05	2.05	1.0	1.0
1.0	0.90	1847.6	146.1	25.7	1	2.55	2.55	1.0	1.0
1.0	1.00	1155.5	293.2	5.0	5.31	120	22.60	1.0	31.5
3.0	0.70	4127.9	197.5	12.1	12.98	120	9.25	3.0	3.0
3.0	0.80	2890.2	213.9	9.0	10.28	120	11.68	3.0	3.0
3.0	0.90	1937.7	249.7	5.9	6.44	120	18.63	3.0	3.0
3.0	1.00	1188.0	293.2	5.1	5.01	120	23.93	3.0	33.5
5.0	0.70	4337.2	198.6	12.0	11.73	120	10.23	5.0	5.0
5.0	0.80	3014.6	215.1	8.9	9.30	120	12.90	5.0	5.0
5.0	0.90	2006.3	251.7	5.8	5.79	120	20.73	5.0	5.0
5.0	1.00	1221.5	293.2	5.1	4.73	120	25.37	5.0	35.5

• Composite curves ($\Delta T_{min} = 5$ K, $\eta_s = 1.0$):

Outline

- Motivation
- Problem formulation
- Simplified model
- Rigorous model
- Comparison
- Conclusions

Comparison

		Simplified		Rigorous (p _L = 1 bar)		Rigorous (p _H = 120 bar)	
$\Delta T_{ m min}$	η_s	\mathcal{T}_{stage}	Ŵ _{net}	\mathcal{T}_{stage}	Ŵ _{net}	\mathcal{T}_{stage}	$\dot{W}_{\rm net}$
(K)	(-)	(K)	(kW)	(K)	(kW)	(K)	(kW)
1.0	0.70	128.9	3835.9	130.5	3845.5	196.3	3926.5
1.0	0.80	132.7	2644.1	135.0	2654.6	212.6	2769.7
1.0	0.90	140.8	1841.0	146.1	1847.6	247.6	1871.5
3.0	0.70	137.8	4339.8	141.0	4332.5	197.5	4127.9
3.0	0.80	144.5	2921.4	149.0	2919.1	213.9	2890.2
3.0	0.90	158.5	1982.4	169.3	1975.0	249.7	1937.7
5.0	0.70	143.2	4769.6	148.0	4742.7	198.6	4337.2
5.0	0.80	152.0	3153.6	158.5	3138.2	215.1	3014.6
5.0	0.90	170.0	2100.2	185.9	2079.3	251.7	2006.3

Comparison

• Specific heat compression/expansion:

Outline

- Motivation
- Problem formulation
- Simplified model
- Rigorous model
- Comparison
- Conclusions

Conclusions

- Single expander process optimized for different values of $\Delta T_{\rm min}$ and $\eta_{\rm s}$ for both simplified and rigorous thermodynamic model
- Two local optimal solutions observed for the rigorous model, of which one is close to the solution of the simplified model
- For most cases, the best solution found is significantly different for the two models

Future work

• Extensions to dual expander process

Acknowledgements

- This publication is based on results from the research project *Enabling Low-Emission LNG Systems*, performed under the PETROMAKS program. The authors acknowledge the project partners; Statoil and GDF SUEZ, and the Research Council of Norway (193062/S60) for financial support
- Per Eilif Wahl, SINTEF Energy Research, is acknowledged for providing the interface software required for the study

References

- Castillo L, Dorao CA. Influence of the plot area in an economical analysis for selecting small scale LNG technologies for remote gas production. *Journal of Natural Gas Science and Engineering*. 2010;2(6):302-309.
- Marmolejo-Correa D, Gundersen T. New Graphical Representation of Exergy Applied to Low Temperature Process Design. *Industrial & Engineering Chemistry Research*. 2013;52(22):7145-7156.
- Remeljej CW, Hoadley AFA. An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes. *Energy*. 2006;31(12):1669-1683.
- Schittkowski K. NLPQLP (Version 2.2) [Computer program]; 2006. Available from: http://www.ai7.uni-bayreuth.de/nlpqlp.htm [accessed 2014 June 2].
- Shah NM, Hoadley AFA. A Targeting Methodology for Multistage Gas-Phase Auto Refrigeration Processes. *Industrial and Engineering Chemistry Research*. 2007;46(13):4497-4505.
- Tangen G, Mølnvik MJ. Scenarios for remote gas production. *Applied Energy*. 2009;86(12):2681-2689.

