3'rd Trondheim Gas Technology Conference: June 4-5th 2014

"Investigation of non-ideal behaviour of plate-fin heat exchangers in LNG services using optimization techniques"

Geir Skaugen, Morten Hammer, Magnus Aa. Gjennestad, SINTEF Energy Research

Contents

- Introduction
- Description of the simulation models
- Results from the simulations
- Discussion
- Summary and conclusions

FlexHX: A flexible heat exchanger modeling framework

Generic tool with building blocks of:

Flexible and robust data structure to handle various heat exchanger variants – both steady state and transient formulation

The Plate-Fin heat exchanger model structure

Simple description of PFHE layers and parting sheets for one heat exchanger element

Heat transfer resistance: both axial (conductive) and between parting sheet and fluid (convective + conductive)

Solid nodes representing individual surface (metal) temperatures

Solving the thermo-hydraulic balance in FlexHX

- Guess all metal temperatures
- Integrate
 - Pressure
 - Enthalpy
 - Surface heat transfer
 - along each individual fluid pass

- Solve the heat balances around each solid node temperature as a system of nonlinear equations to update all metal temperatures
- The number of thermal equations to be solved: (Streams +1) x (HX elements)

This method has proven to be very robust to handling both phase change and other thermo-physical discontinuities and demanding operating conditions

Wall temperature profile

Comparison of the PFHE Model with Aspen MUSE

			Multiple channels Multiple channels Geometry II Geometry II Geomet
Number of parallel blocks	12		Layer A Layer B Layer C
Width (mm) x Depth (mm) x Active length (mm)	1173 x 12	72 x 5150	PFHE Model
	LPMR	HPMR	NG
Number of layers	1416	720	180
Fin type	Perforated	Serrated	Serrated
Fin height (mm)	5.1	5.1	5.1
Fin thickness (mm)	0.3	0.3	0.4
Fin frequency (m ⁻¹)	787	787	787
Parting sheet thickness (mm)	2.0	2.0	2.0
Operating conditions :			
Inlet temperature (K)	116.05	298.15	298.5
Inlet pressure (bar)	5.34	25.88	55.0
Inlet vapour fraction (-)	0.0325	0.6656	1.0
Molar flow rate (kg/s)	101.0	101.0	17.7
Mass flux (kg/m^2s)	19.48	33.57	26.76
Flow direction	Upward	Downward	Downward

Comparison of capacity between MUSE and the PFHE

Calculated capacity (%)

MUSE PFHE

9

Comparison of calculated pressure drop

Temperature profile

Modelling of individual layers

- Individual, local spatial wall temperatures
- Include headers and flow distribution/restriction elements
- Investigate the effect of
 - layer-stacking
 - flow mal-distribution
 - geometry imperfections
- Optionally include the J/T-valve between high pressure and low pressure refrigerant

Inclusion of flow distribution equations

Pressure drop and flow distribution are influenced by:

- Difference in heat flux in individual layers
- Individual flow lengths through distributors
- Geometrical imperfections

Equal pressure drop for each individual layer for each stream

$$\sum_{i=1}^{\mathrm{ns}} \sum_{j=2}^{\mathrm{nl}(i)} \Delta p_{i,j-} \Delta p_{i,1} = 0$$

Sum of individual flow rates in each layer is equal to the stream flow rate

$$\sum_{i=1}^{\mathrm{ns}} \left(\sum_{j=1}^{\mathrm{nl}(i)} \dot{m}_j \right) - \dot{m}_i = 0$$

nl: Number of layers ns: Number of streams

Examples of effects of Layer stacking – 1/20th of full HX

Layer ID	Stream	Number of layers
А	High pressure refrigerant	5
В	Low pressure refrigerant	14
С	Natural gas	2

Possible stacking pattern (scaled down HX)

Results from symmetric layer pattern

Flow distribution between layers

Results from asymmetric layer pattern

Flow distribution between layers

	Lumped layer model	Individual layer model – symmetric	Individual layer model – asymmetric
Cooling capacity (kW)	1750	1731 (- 1.03 %)	1718 (-1.81 %)
Outlet NG temperature (K)	116.6	118.9 (+ 2.3)	121.2 (+ 4.6)
Required oversizing		22 %	38 %

Investigation of flow instability (Ledinegg instability)

Find the flow mal-distribution that will have the lowest pressure drop

A "reasonable" high number of individual layers are required

Formulation of the optimisation problem

minimize
$$f(\mathbf{x})$$
 Pressure drop (MRLP)

subjected to
$$g(x_j) = 0$$
, $j = 1 \dots$, m_e

Equal pressure drop for each layer

 $g(x_j) \ge 0,$ $j = m_e + 1 \dots, m$ All mass-flows must be positive (other process constraints)

> A given range for the mass-flow rates

$$x_l \le x \le x_u \ \forall \ x_i, i = 1..n$$

Results from the optimisation

- In the current setup, the number of free variables (flow rates) are equal to the number of equality constraints
- No degree of freedom to "optimize"
- Multiple solutions may exist: Initial values for the individual flow rates determine the solution
- Inequality constraints ensure physical solutions

Results from the optimisation

• The strong thermal coupling through the metal walls ensure low temperature difference between neighbouring streams

Results from the optimisation

- Break the thermal coupling by introducing one insulation layer
- Two different solutions can be found
- Cooling capacity is reduced by 15 %

Summary and conclusions

- A detailed Plate-Fin heat exchanger model has been developed in order to investigate effects of stacking pattern and non-ideal behaviour
- Effects of different layer stacking may require oversizing 20-40%
- Strong thermal coupling through the metal walls ensures small local temperature differences
- In a situation where flow instability may occur, two unique solutions for the mass-flow distribution can be obtained – but depending of the initial values
- An additional degree of freedom required for a full optimisation (internal mass-transfer?)
- **Nevertheless**: A design or operating condition where multiple solutions may exist should be avoided

Acknowledgements

This presentation is based on results from the research project *Enabling low emission LNG systems*, performed under the Petromaks program. The author(s) acknowledge the project partners; Statoil and GDF SUEZ, and the Research Council of Norway (193062/S60) for support.

