

#### NTNU – Trondheim Norwegian University of Science and Technology

#### Numerical Study on the Condensation Length of Binary Zeotropic Mixtures

Han Deng, Maria Fernandino, Carlos A. Dorao

3rd Trondheim Gas Technology Conference 4 – 5 June, 2014 Trondheim, Norway

### Outline

Introduction

Heat and mass transfer during mixtures condensation

Equilibrium models

□ Non-equilibrium models

Results

Conclusions

# Motivation

- The study of the two-phase condensation region is important for the design of heat exchangers.
- The condensation process of binary mixtures is more complicated than that of the single component fluid.



#### Heat and Mass Transfer during Mixture Condensation — different from pure fluid



- Concentration shift
- Non-isothermal



#### Heat and Mass Transfer during Mixture Condensation — Resistances



In practice, the process is more complicated.

- Concentration:
   Yi > Yv, XL < Xi</li>
- Temperature:
   T<sub>L</sub> < T<sub>i</sub> < T<sub>V</sub>



## Definitions in this work

- Equilibrium vs. non-equilibrium models
  - Equilibrium: no mass transfer resistance example: Silver [1] and Bell & Ghaly [2] models
  - Non-equilibrium: mass transfer resistance example: film theory, Colburn & Drew [3]
- Heat and mass transfer resistance
   The resistance emphasized in the present work is specific to the vapor phase.
   The mass transfer resistance in the liquid phase is not predominated.



#### Overview of the models

 Resistances considered in each model

| Model | Mass         | Heat         |
|-------|--------------|--------------|
| 1     | ×            | ×            |
| 2     | ×            | $\checkmark$ |
| 3     | $\checkmark$ | <b>×*</b>    |
| 4     | $\checkmark$ | $\checkmark$ |

 Common assumptions 1D steady-state model; annular flow.





# Equilibrium models

Conservation equations:

Mass: vapor  $\frac{d}{dz}(\alpha \rho_v V_v) = -M_t$ liquid  $\frac{d}{dz}((1-\alpha)\rho_l V_l) = M_t$ 

Momentum:

$$\frac{\mathrm{d}}{\mathrm{d}z} \left( \alpha \rho_{\mathrm{v}} V_{\mathrm{v}}^2 \right) + \frac{\mathrm{d}}{\mathrm{d}z} \left( (1-\alpha) \rho_{\mathrm{l}} V_{\mathrm{l}}^2 \right) = -\frac{\mathrm{d}P}{\mathrm{d}z} - \frac{4}{D_{\mathrm{w}}} \tau_{\mathrm{w}}$$



## Equilibrium models

- Heat balance:  $Q_w = Q_{lv} + Q_{sv}$ heat flux:  $q_w = \frac{D_v}{D_w}(q_{lv} + q_{sv})$
- Condensation rate:

$$M_{\rm t} = \frac{4}{D_{\rm w}} \frac{(q_{\rm w} - (D_{\rm v}/D_{\rm w})q_{\rm sv})}{H_{\rm lv}}, \ H_{\rm lv} = f(T_{\rm eq}, C_0)$$





#### 10

#### Equilibrium models

- Heat balance:  $Q_w = Q_{lv} + Q_{sv}$ heat flux:  $q_w = \frac{D_v}{D_w}(q_{lv} + q_{sv})$
- Condensation rate:

 $M_{\rm t} = \frac{4}{D_{\rm w}} \frac{(q_{\rm w} - (D_{\rm v}/D_{\rm w})q_{\rm sv})}{H_{\rm lv}}, \ H_{\rm lv} = f(T_{\rm eq}, C_0)$ 





#### www.ntnu.edu

#### Equilibrium models

- Heat balance:  $Q_w = Q_{lv} + Q_{sv}$ heat flux:  $q_w = \frac{D_v}{D_w}(q_{lv} + q_{sv})$
- Condensation rate:

$$M_{\rm t} = \frac{4}{D_{\rm w}} \frac{(q_{\rm w} - (D_{\rm v}/D_{\rm w})q_{\rm sv})}{H_{\rm lv}}, \ H_{\rm lv} = f(T_{\rm eq}, C_0)$$

Sensible heat (Del Col et al. [4])

 $\frac{Q_{\rm sv}}{Q_{\rm w}} \approx x c_{\rm p,v} \frac{dT}{dh} \approx x c_{\rm p,v} \frac{\Delta T_{\rm db}}{\Delta H_{\rm m}}$ 



# Non-equilibrium models

• Additional conservation equations: Species:  $\frac{d}{dz}(\alpha \rho_v V_v Y) = -M_1$ 

Energy:

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(\alpha \rho_{\mathrm{v}} V_{\mathrm{v}} H_{\mathrm{v}}\right) - H_{\mathrm{vi}} \frac{\mathrm{d}}{\mathrm{d}z} \left(\alpha \rho_{\mathrm{v}} V_{\mathrm{v}}\right) = -\frac{4D_{\mathrm{v}}}{D_{\mathrm{w}}^2} q_{\mathrm{sv}}$$



### Non-equilibrium models

 Condensation rate of each component Based on film theory and Fick's law,

$$M_1 = M_t Y_i - \frac{4D_v}{D_w^2} k_v (Y_i - Y)$$
$$M_2 = M_t - M_1$$

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Heat flux
Latent:  $q_{lv} = \frac{D_w^2}{4D_v}(M_1H_{lv,1} + M_2H_{lv,2}), H_{lv} = f(T_i)$ Sensible:  $q_{sv} = h_v(T_v - T_i)$ 



# Summary of the models

| Model | <b>Conservation Eq.s solved</b>    | Information needed            |
|-------|------------------------------------|-------------------------------|
| 1     | mass, momentum                     | T-C diagram                   |
| 2     | mass, momentum                     | T-C diagram                   |
| 3     | mass, momentum, species            | T-C diagram, diffusivity data |
| 4     | mass, momentum, species,<br>energy | T-C diagram, diffusivity data |



Study case

Mixture: R134a/R123 0.349/0.651 by mass

Inlet pressure: 495 kPa

Mass flux: 300.5 kg/m<sup>2</sup>s

Tube: diameter 8.4 mm, horizontal

Wall heat flux: interpolated from Kogawa's [5] experimental data with quadratic polynomials





 $L_4 = 1.09L_3$ 















# Conclusions

- The non-equilibrium models give better predictions than the two equilibrium models.
- The mass transfer resistance in the vapor phase has a significant effect on the condensation length, and it overweighs the influence of heat transfer resistance.
- The equilibrium models are simpler, computationally cheaper and faster than the non-equilibrium models, but it may underpredict the required length for full condensation.
- □ A method that can predict mass and heat transfer accurately and efficiently is highly demanded for the reliable design.



#### References

[1] L. Silver, Gas cooling with aqueous condensation, Transactions of the Institution of Chemical Engineers 25 (1947) 30–42.

[2] K.J. Bell, M.A. Ghaly, An approximate generalized design method for multicomponent/partial condensers, AIChE Symposium Serie 69 (1973) 72–79.

[3] A.P. Colburn, T.B. Drew, The condensation of mixed vapors. Trans. AIChE 33 (1937) 197–215.

[4] D. Del Col, A. Cavallini, J.R. Thome, Condensation of zeotropic mixtures in horizontal tubes: new simplified heat transfer model based on flow regimes, Journal of Heat Transfer 127 (3) (2005) 221–230.

[5] K. Kogawa, An experimental study on condensation of R134a/R123 mixtures inside horizontal smooth and micro-fin tubes, MS thesis, Kyushu University, Fukuoka, Japan.



# Thank you for your attention!



# Appendix: closure relations

Pressure drop model

$$\begin{split} \Phi_{\rm lo}^2 &= (1-x)^2 + x^2 \frac{\rho_{\rm l} f_{\rm vo}}{\rho_{\rm v} f_{\rm lo}} + 3.24 A_2 A_3 F r^{-0.045} W e^{-0.035} \\ A_2 &= x^{0.78} (1-x)^{0.224}, \quad A_3 = \left(\frac{\rho_{\rm l}}{\rho_{\rm v}}\right)^{0.91} \left(\frac{\mu_{\rm v}}{\mu_{\rm l}}\right)^{0.19} \left(1 - \frac{\mu_{\rm v}}{\mu_{\rm l}}\right)^{0.7} \\ \tau_{\rm w} &= f_{\rm lo} \frac{G^2}{2\rho_{\rm l}} \Phi_{\rm lo}^2. \end{split}$$

Heat transfer coefficients

$$h_{\rm v} = 0.023 \text{Re}_{\rm v}^{0.8} \text{Pr}_{\rm v}^{0.4} \lambda_{\rm v} / \text{D}_{\rm v}$$
$$h_{\rm l} = 0.023 \text{Re}_{\rm l}^{0.8} \text{Pr}_{\rm l}^{0.4} \left(1 + \frac{2.22}{X_{\rm tt}^{0.89}}\right) \frac{\lambda_{\rm l}}{\text{D}_{\rm w}}$$

Mass transfer coefficient

$$k_{\rm v} = \frac{\rho_{\rm v} \mathcal{D}_{\rm v}}{D_{\rm v}} S h_{\rm v} = \frac{\rho_{\rm v} \mathcal{D}_{\rm v}}{D_{\rm v}} 0.023 R e_{\rm v}^{0.8} S c_{\rm v}^{1/3}$$

