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Introduction

• Heat exchangers with parallel
channels

– Pressure drop dependent on
phase composition

– May result in wrong flow
distribution

– May cause instabilities
• Need to model junctions

dynamically
– F.ex. main inlet pipe to tubes
– Repartition of mass flow in

each pipe
Shell-tube heat exchangers

Wikimedia commons
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Overview

• Numerical modelling of flow in pipes

• The model: Isentropic Euler equations
• The Riemann problem

– Mathematical notions
– Coupling of the pipes through the generalised Riemann

problem
– The right coupling condition

• Physical interpretation
• Numerical examples

– Entropy condition at the junction
– Conservation of energy in junctions
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Modelling of flow in pipes

• One-dimensional models

• Finite-volume method

• Boundary conditions with ghost cells

x

Cell Cell averageGhost cell
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Junctions

• Several pipe connected together

• How to represent a junction?
– Pipes: one-dimensional models
– Junction: multi-dimensional

flow
• Describe the junction with ghost

cells
– Solve the pipes as independent

domains
– Set the ghost cells

• The junction has no volume

x

x

x
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The model
Isentropic Euler equations

• Conservation of mass:
∂ρ
∂t
+ ∂
∂x
(ρv) = 0

• Conservation of momentum:
∂ρv
∂t
+ ∂
∂x

(
ρv2 + p

)
= 0

Equation of state for isentropic flow

p = kργ
(
then, s(x, t) = const

)
In quasilinear form ∂U

∂t +A
∂U
∂x = 0

U =
(
ρ
ρv

)
, A =

(
0 1

a2 − v2 2v

)
where a2 =

(
∂p
∂ρ

)
s
= γp
ρ
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The Riemann problem

• Eigenvalues of the
Jacobian

v − a , v + a
with eigenvectors(

1
v − a

)
,
(

1
v + a

)

• Shock or rarefaction wave

• The star-state U∗

– Related to UL and UR
through the wave of
family 1 and 2,
respectively

ρ

x

UL

UR

ρ

x

v + a

v − a
UL

UR

ρ

x

v + a

v − a
UL

UR

ρ

x

v + a

v − a
UL

UR
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The Riemann problem

Equations for the waves of the
second family

v∗
(
ρ∗ ;ρR , vR

)
R2 = vR

+ 2
√
γk

γ − 1

(
ρ∗

γ−1
2 − ρR

γ−1
2

)
, 0 < ρ∗ ≤ ρR

v∗
(
ρ∗ ;ρR , vR

)
S2 = vR

+
√
k (ρ∗ − ρR) (ρ∗γ − ρRγ)

ρ∗ρR
, ρ∗ > ρR

Hugoniot Locus: points
connected by a curve
separated by one wave

ρ

x

U∗
UL

UR

ρ

v

(ρR , vR)

Se
co

nd
fa

m
ily

First fam
ily

(
ρ∗, v∗

)
R2

(
ρ∗, v∗

)
S2
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The Riemann problem

U

x

U∗U∗

Pipe initialised with a Riemann problem
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The Riemann problem

U

x

U∗

U∗

After evolution. At the initial discontinuity, the U∗-state
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The Riemann problem

U

x

U∗

U∗

• Pipe cut in two at the initial discontinuity,
– U∗ as initial value in the boundary cells.

• The same waves propagate to the left and to the right
as in the whole pipe.

• The two half-pipes are coupled using the U∗-state.
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The generalised Riemann problem

• We can couple 2 pipes and get the same behaviour as if we
had a single pipe.

– U∗-state is the only information needed to couple them
• Can we find a U∗-state for more than 2 pipes?

– Yes, but slightly more complicated

SINTEF Energy Research 10



10

The generalised Riemann problem

• We can couple 2 pipes and get the same behaviour as if we
had a single pipe.

– U∗-state is the only information needed to couple them
• Can we find a U∗-state for more than 2 pipes?

– Yes, but slightly more complicated

SINTEF Energy Research 10



11

The generalised Riemann problem

• Each pipe section has its own
U∗k -state,

• following the conditions:

– Each U∗k is related to the
initial Uk in the kth section
⇒ Wave equation (positive

speed or stationary)

– U∗1 ,. . . ,U∗N are related
together
⇒ Junction condition

• Reminder: the junction has no
volume

U∗1U∗2

U∗k

U1

U2

Uk

Section 1

Section 2

Section k
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The coupling conditions

Two conditions are needed to close the system

• Conservation of mass is an obvious condition

N∑
k=1

(
Akρ∗k v

∗
k

)
= 0

• What about momentum?
– It is a vector quantity
– Conserved as a scalar in 1D-models
– Conserved as a vector in 3D

– Junctions are 3D objects
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The coupling conditions
Momentum condition expressed as a coupling constant

For all k, H
(
ρ∗k , v

∗
k

)
= H̃

• The quantity H
(
ρ∗k , v

∗
k

)
, function of the U∗k -state,

• is equal to a unique H̃ for all the pipe sections.
• It is called the coupling constant.

What should be the coupled quantity H (ρ, v)?
• The pressure?

Hp(ρ, v) = p = kργ

$

• The momentum flux? (Conservation of momentum)

HMF(ρ, v) = ρv2 + p = ρv2 + kργ

$
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The coupling conditions
Momentum is a vector quantity

• If the flow derives from a scalar potential field, it is possible
to return to a scalar coupling condition

• The Bernoulli invariant is the scalar potential
• It is the stagnation enthalpy h+ 1

2v
2

In term of coupled quantity H (ρ, v)

HBI(ρ, v) = h+
1
2
v2 = kγ

γ − 1
ργ−1 + 1

2
v2

!

• The flow is virtually brought to a rest at the junction
• It then flows in the pipe sections from the stagnation state,

independently of the other sections

SINTEF Energy Research 14
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The coupling conditions

To summarise

• Need to find the
stagnation enthalpy
(identical for all U∗k )

• Such that, in each pipe
section k, U∗k and Uk are
related by the relevant
wave equation

• One stagnation enthalpy,

N different U∗k =
(
ρ∗k , u

∗
k

)

Shocks

Rarefaction

U∗k

Uk

Wave equation

Same stagnation

enthalpy
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Numerical results

• Examples of why the
Bernoulli-based coupling is right

– Entropy condition at an
isolated junction

– Energy in a closed system

• Simulated with a Roe scheme

J
S1

S2

S3

J1 J2

S1

S2

S3
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Entropy condition in a junction

• Three pipe sections
– Junction at one end
– Extrapolation at the

other end (infinite pipe)

• Initialised with v3 either
0 m/s or 50 m/s.

• The junction reaches
steady state

J
S1

S2

S3

Initial conditions

Pressure Velocity
( bar) ( m/s)

Section 1 1 0
Section 2 1.5 0
Section 3 1.4 v3

SINTEF Energy Research 17
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Entropy condition in a junction

Entropy condition

σJ =
N∑
k=1

Akρ∗k v
∗
k

(
h∗k +

1
2
v∗k

2
)
≤ 0

Value of the entropy condition at steady state

Equal pressure Momentum flux Stagnation enthalpy

v3 = 0 m/s 1.1× 105 J/s −8.2× 104 J/s ≈ 0 J/s

v3 = 50 m/s −6.6× 104 J/s 9.8× 104 J/s ≈ 0 J/s
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Energy balance in a closed system

• Three pipe sections
– Junctions at each end

• The system’s energy
content is followed

– Should decrease,
because shocks
dissipate energy

J1 J2

S1

S2

S3

Initial conditions

Pressure Velocity
( bar) ( m/s)

Section 1 1 0
Section 2 1.5 0
Section 3 1.4 0
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Energy balance in a closed system

 0.993
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Equal pressure
Momentum flux

Stagnation enthalpy

Evolution of the total energy content of the system

⇒ Wrong coupling constants in the junctions cause a
non-physical production of energy.
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Summary

• Using the wrong coupling quantity breaks the laws of
physics

– In particular, energy conservation

• Rather theoretical derivation, proved for isentropic Euler
equations

• Coupling multiphase flow models with real thermodynamics
– Physical interpretation hints that stagnation enthalpy should

play a role

• Energy is a scalar quantity: same conservation principle as
mass?

Proofs in:
Gunhild Allard Reigstad, Mathematical modelling of fluid flows in
pipe networks, Doctoral theses at NTNU, 2014:120
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