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Motivation

Purpose of work

To gain insight into fundamental phenomena occurring in heat
exchangers in liquefaction plants.

Basic hypothesis

A thorough understanding of the processes and phenomena
occurring at a small-scale level in the heat exchanger is
necessary to obtain an improved understanding of the heat
exchanger, its design and operation.
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Motivation

Why do we need an increased understanding and why use
mathematical models and do simulations?

e Liguefaction of natural gas requires energy. Naturally, we
want to make the liquefaction process as energy-efficient as
possible.

e A thorough understanding is necessary to design more
efficient heat exchangers.

e There seems to be a general consensus that numerical
simulation is one of the most promising approaches for
studying phenomena such as heat transfer characteristics
and condensation/boiling.
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The flow model

The flow model consists of the incompressible Navier-Stokes
equations.

We assume incompressibility,
V-u=0,
and momentum balance,

pu+u-vVyu)=-Vp+V-uvu+fp+fs.
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The heat transport model

Heat transfer is modelled by keeping track of temperature.

We introduce an advection-diffusion equation for the
temperature,

pcp (0T +u-VT)=V - -kVT.

To model temperature-driven flows, we need to introduce a
temperature-dependent buoyancy force,

fo=pg(1-B(T-Tx)),

where B is the thermal expansion coefficient and T is a
reference temperature.
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The level-set method

The interface T is implicitly defined as the zero isocontour of the
level-set function ¢,

I'={x|¢ (x) = 0}.
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The level-set method

The interface T is implicitly defined as the zero isocontour of the
level-set function ¢,

I'={x|¢ (x) = 0}.

The level-set function ¢ is the signed distance to the interface,

b (x) —minyer [x — y| if x in Phase 1,
X =
minycr [x — y| if x in Phase 2.
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The level-set method

The time-evolution of the level-set function is determined by
orp+w- Ve =0.

where w is the interface velocity.
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The level-set method

The time-evolution of the level-set function is determined by
orp+w -V =0.

where w is the interface velocity.

The normal vector field n is defined in terms of ¢ as

n=Vao.

SINTEF SINTEF Energy Research 10



An example level-set function
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The phase transition model

We model mass transfer between phases as a result of
vaporisation and/or condensation.

It is assumed that the interface temperature is equal to the
saturation temperature of the liquid.

Any resulting discontinuity in heat flux g = —kVT at the
interface is used to calculate the mass flux

. [q-n]
M="An

where Ah is the specific enthalpy difference of the phase
transition.
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The phase transition model

The mass flux is used to calculate the jump in velocity [u] at the
interface,

SINTEF SINTEF Energy Research 13



The phase transition model

The mass flux is used to calculate the jump in velocity [u] at the
interface,
1
[u] = m [] n.
p

The interface velocity is found from

m
W =u; — —n.
P1
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Photo: Nir Schneider, CC BY 2.0.
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temperature-driven
two-phase flow.
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Lava lamp

Why simulate the lava

lamp?

e The lava lamp is a
canonical example of a
temperature-driven
two-phase flow.

e Frequency of blob
exchange oscillations
can be compared to
experiment_ Photo: Nir Schneider, CC BY 2.0.
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Lava lamp
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Lava lamp
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Boiling film
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Boiling film
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Boiling film
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Boiling film
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Boiling film
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