Enabling low-emission LNG systems

Flow pattern transitions and hysteresis effects of falling film over horizontal tubes

Anders Austegard, Amy Brunsvold experiments performed by Mayukh Bandopadhyay Trondheim Gas Technology Conference #3

Motivation

- Purpose of work
 - To gain insight into fundamental phenomena occurring in heat exchangers of natural gas liquefaction plants.
- Basic hypothesis
 - A thorough understanding of the processes and phenomena occurring at a small-scale level in the heat exchanger is necessary to improve heat exchangers' design and operation
- This task
 - To characterize flow regimes between the tubes.
 - The heat transfer is decided by film thickness, the stability and thickness of the film is depending on flow type between the tubes

Spiral heat exchanger

Photo: Linde Group

Spiral wound HX – flow between tubes

- In a spiral wound HX, the tubes are at an angle and supported regularly.
- The flow will partly go along the tubes and fall down at the supports
- Typically the tubes are quite close
- Our goal: Understand flow between tubes
- Experimental model
 - Horizontal tubes
 - Flow would otherwise go to the end of tubes
- The image is actually of a spiral wound HX for a reactor
 - In an LNG heat exchanger the tubes are closer together

Experimental setup

- A reservoir over a drip hole arrangement
- Even flow onto the upper tube.
- Flow is captured by a high speed camera
- In the setup
 - Tube diameter
 - Tube distances
 - can be varied
- The surface of the tubes is rough

Flow pattern categorization

Hu & Jacobi 1996[1]

Column - Sheet

Sheet

- There are additional transitional / hybrid states
- Between tubes with pentane the flow regimes could be less defined than in ۲ illustration

Droplet mode with 4 mm spacing

Analysis

- Important variables that decides behaviors: ρ_l : Density liquid (kg/m³), σ : Surface tension (N/m) μ : Viscosity(Ns/m²), g: Gravity(= 9.81m/s²) D: Tube diameter(m), S: Space between the tubes(m) Γ : Flow/Tube length (kg/ms), k: Roughness(m)
- Characteristic length of surface tension:

- $Ca = \sqrt{\sigma/(\rho g)}$

• 5 dimensionless parameters (Dimensions m, s, kg, 8-3=5):

$$Re = \frac{2\Gamma}{\mu_L}, \qquad Ga = \frac{\rho_L \sigma^3}{\mu_L^4 g}, \qquad \frac{D}{Ca}, \qquad \frac{S}{Ca}, \qquad \frac{k}{Ca}$$

• The following parameter can be made without viscosity:

$$\frac{Re}{Ga^{1/4}} = \frac{2\Gamma g^{1/4}}{\rho_L^{1/4}\sigma^{3/4}}$$

Model

• Must author uses the following model for the transitions:

 $Re = A \times Ga^p$

- Often p = 0.25, and it is always close to 0.25
- Some (like Jacobi, 2012 [6]) also uses:

$$Re = A \times Ga^{1/4} \sqrt{S/Ca}$$

• Bases: minimum energy for a long column or sheet

Uncertainty

- The flow regime characterization is subjective.
- Uncertainty in mass flow, fluid properties and dimensions.
- To check repeatability, two measurement series are done under the same conditions, D=12mm and space between tubes (S) of 3 mm (S/Ca = 2.0)
 - Deviation between these two experiments in Re/Ga^{1/4} become 0.040
- Tubes in Heat exchanger usually close together: Harder to identify flow regime

Flow characteristics of pentane

- Like natural gas, pentane has:
 - Low surface tension
 - Low viscosity

compared with water

	Pentane (40°C)	Liquid methane (- 162 °C, NIST[1])	Water (20°C) (NIST [1])
Density (kg/m³)	606	422	998
Surface tension(N/m)	0.0137	0.0129	0.072
Viscosity (Pa/s)	1.97 * 10 ⁻⁴	1.12 * 10 ⁻⁴	10 * 10-4
Ga ^{1/4}	569	875	441
Ca (mm)	1.52	1.77	2.71

Result Summary, with average for given transition and diameter

- Hysteresis effect evident
- Deviation is 0.14 from model where Re/Ga^{1/4} is constant for given D for a transition

Test of model $Re/Ga^{1/4} = A\sqrt{s/Ca}$

- Results are averaged for tube diameters between 8 and 12 mm
- Results appear invariant of tube separation (s)

Test of model $Re/Ga^{1/4} = A$

- Deviation between model and measurement become here 0.23
 - 0.14 if diameter is separated
 - 0.04 for repeated experiment
- Any dependence between Re/Ga^{1/4} is less than experimental accuracy

Comparison with literature

Uses: $Re = aGa^b$, here to get comparison it is reordered: $\frac{Re}{Ga^{1/4}} = A\left(\frac{Ga}{Ga_{Pentane}}\right)^B$ where $Ga_{Pentane} = 1.05 * 10^{11}$.

	This work A, B=0			Honda [2] ¹ B=0	Armb- uster [3],B=0	Hu & Jacobi [4]		Roques [5]	
	Both	D=8	D=12	A	А	А	В	А	В
Droplet ↔ Droplet – Column	0.61		0.61	0.52	0.20	0.28	0.05	0.30	0.08
Droplet – Column ↔ Column	0.69	0.52	0.94		0.26	0.35	0.05	0.41	0.07
Column ↔ Column – Sheet	1.15	1.02	1.30	1.28	0.94	0.92	-0.02	0.82	0.00
Column – Sheet ↔ Sheet	1.67	1.82	1.58	1.04- 1.32 ²	1.14	1.02	-0.01	1.25	0.01

¹: Low finned tubes, the only one with similar fluid as pentane. 2 :B= -0.014

Comparison with literature (2)

- All studies except Honda have run on water or other fluid with high surface tension and viscosity.
- The others generally have longer distance between the tubes

Conclusions

- The transitions between droplet, column, and sheet flow for pentane have been studied
- The transitions, specially from droplet to column are not easy to identify with pentane due to small surface tension.
- Possibly improved results can be achieved with longer tubes
- In literature, comparable studies have mostly been using fluids with higher surface tension and viscosity and often with longer distances between the tubes.

Acknowledgement

This publication is based on results from the research project *Enabling low emission LNG systems*, performed under the Petromaks program. The author(s) acknowledge the project partners; Statoil and GDF SUEZ, and the Research Council of Norway (193062/S60) for support.

References

- [1]: NIST: national Institute of Standard and Technology http://webbook.nist.gov/chemistry/fluid/
- [2]: H. Honda, S. Nozu and Y. Takeda "Flow characteristics of condensation on a vertical column of lowfinned horizontal tubes, 1987 ASME-JSME Thermal Engineering Joint Conference, Vol 1 pp 517-524
- [3]: R. Armbuster, R and J. Mitrovic, Pattern of falling film flow over horizontal smooth tubes, Institution of Chemical Engineers Symposium series, 1994, Hemsphere Publishing Corporation
- [4]: X. Hu and A. Jacobi, The intertube falling film: part 1-flow characteristics, mode transition and hysteresis, *Journal of heat transfer* **118(3):626-633**, 1996
- [5]: J. Roques ..., Falling film transition on plain and enhanced tubes, *Journal of heat transfer* **124(3)**: 491-499, 2002
- [6]: Anthony M. Jacobi and Xiaofei Wang, A Thermodynamic Basic for Predicting Falling-Film Mode Transitions, 2012. International Refrigeration and Air Condition Conference, Paper 1315, Purdue University, http://docs.lib.purdue.edu/iracc

