

Two-phase flow in a down-hole shut-in valve

by S. Edvardsen, C.A. Dorao, O.J. Nydal Department of Energy and Process Engineering

Research question:

• How accurate can the single phase/two-phase pressure drop in a complex geometry be quantified?

Objective:

- 3-dimensional CFD simulation for liquid pressure drop
- Make 1-D model from CFD data
- Simulate 2-phase flow with Least Squares Spectral Element Method (LSSEM)

Down-hole shut-in valve

CFD simulation

Pressure drop

Pressure calculated as average over cross-section

$$P_1 + \rho \frac{v_1^2}{2} - K_L \rho \frac{v_1^2}{2} = P_2 + \rho \frac{v_2^2}{2}$$

NTNU Norwegian University of Science and Technology

Axial pressure profile

Minor losses

No.	Description	Length	Minor	Diameter	Hydraulic
		S	loss	(perimeter)	diameter
		[m]	coeff.	[m]	[m]
1	Circular	0.100		0.0849	0.0849
2	Diffuser, 16°	0.030	0.036	0.0849 < 0.094	
3	Circular, at inlet	0.525		0.094	0.094
4	Annular contraction, 90°	0.015	0.366	0.094 >	0.024
5	Annular	1.259		0.094 x 0.070	0.024
6	Annular contraction, 90°	0.004	0.095		0.024 > 0.020
7	Annular	0.075		0.094 x 0.074	0.02
8	Annular contraction, 90°	0.006	0.071		0.020 > 0.016
9	Annular	0.020		0.094 x 0.078	0.016
10	Valve opning	0.075	1.759		0.016 > 0.060
11	Contraction, 40°	0.030	0	0.060 < 0.040	
12	Circular	0.192		0.04	0.04
13	Equalizing central	0.058	0.284		
14	Circular, through packer	1.220		0.04	0.04
15	Expansion	0.288	0.255	0.040 < 0.090	
16	Circular	0.958		0.09	0.09

CFD and 1D model – Liquid flow

Least squares method

• $L\mathbf{u} = \mathbf{g}$ in Ω

.

• $B\mathbf{u} = \mathbf{h}$ on $\partial \Omega$

$$\begin{cases} \frac{\partial}{\partial x} & 0 & 0\\ 0 & \frac{\partial}{\partial x} & 0\\ v_{G}^{*} \frac{\partial}{\partial x} + \frac{\partial v_{G}^{*}}{\partial x} & v_{L}^{*} \frac{\partial}{\partial x} + \frac{\partial v_{L}^{*}}{\partial x} & \frac{\partial}{\partial x} \end{cases} \begin{cases} \alpha \rho_{G} v_{G}\\ (1-\alpha)\rho_{L} v_{L}\\ P \end{cases} = \begin{cases} -\left(\frac{m_{G}}{A^{2}}\right)\frac{\partial A}{\partial x} \\ -\left(\frac{m_{L}}{A^{2}}\right)\frac{\partial A}{\partial x} \\ -\frac{4}{D_{i}}\tau_{W} - v_{G}^{*}\left(\frac{m_{G}}{A^{2}}\right)\frac{\partial A}{\partial x} - v_{L}^{*}\left(\frac{m_{L}}{A^{2}}\right)\frac{\partial A}{\partial x} \end{cases} \end{cases}$$

- Low numerical diffusion
- Generic implementation

Spectral element formulation

- $u_h^e(x) = \sum_{n=0}^i u_n^e \Phi_i(\xi)$
- Higher order method
- Nodal elements:
 - Lagrange polynomial through the zeroes of the Gauss-Lobatto-Legendre polynomials
- Numerically stable without artificial diffusion
- Suitable for the approximation of the Navier-Stokes equation

Multiphase test loop

Laboratory valve mock-up

NTNU Norwegian University of Science and Technology

Two-phase flow experiments

Flow pattern detection

Multiphase flow pressure profile

NTNU Norwegian University of Science and Technology

Air-water flow

Air-water flow

Correlation	Friedel	Chisholm B	Müller Steinhagen and Heck
Average deviation E_1	22.5%	27.1%	10.5%
Standard deviation E ₃	17.3%	19.4%	13.9%

O NTNU Norwegian University of Science and Technology

Air-Exxol D80

Correlation	Friedel	Chisholm B	Müller Steinhagen and Heck
Average deviation E ₁	29.3%	29.6%	12.1%
Standard deviation E ₃	35.4%	32.1%	26.3%

Conclusions

- CFD simulation for single phase flow
- 1D Least Squares Spectral Element Model to be developed from CFD simulation
- 1D LS-SEM method with Müller Steinhagen and Heck correlation for two-phase flow
- Average deviation for pressure drop 10-12%