Norges teknisk-naturvitenskapelige universitet

Innovation and Creativity

Capture with membranes May-Britt Hägg Professor, Dep. Chem. Eng.

TCCS6 Trondheim, June 14-16, 2011

www.ntnu.no

Hägg, Capture with membranes

Outline of presentation

- Membrane capture technologies brief overview
- General about driving force and separation
- New trends, examples
 - Nanocomposites
 - Facilitated transport membranes
 - Pore tailored membranes
 - Membrane contactors
 - Process solutions
- Challenges using polymer membranes
- Simulations must be mentioned
- Conclusions

CO₂ capture – membrane technologies

 Depending on where in the process the membrane will be placed, the transport mechanisms and demands on the material will be very different

Membranes in precombustion

Five stage process of permeation

Permeation is by solution-diffusion Governing equations for:

concentration of H at surface (C_H) and flux through membrane (J_{H2})

$$C_{H} = K_{s} P_{H_{2}}^{0.5}$$

$$J_{H_{2}} = -\frac{D_{M} K_{s}}{2} \frac{(P_{H_{2,\text{Ret}}}^{0.5} - P_{H_{2,\text{Per}}}^{0.5})}{X_{M}}$$

 Separation of CO₂ – H₂ at high temperature (> 300°C)

- Typical materials:
 - Pd / Pd-alloys
- Challenges:
 - Poisoning
 - Detection and elimination of defects
 - Material costs
- Engineering design
 - Complex
 - Scale-up

Membranes in oxyfuel combustion

Process design based on a typical coal fired power plant

- \square SO₂, NO_x, VOC and fly ash are removed to given spesifications
- Dehydration unit may complicate the process if needed for the membrane
- \Box Feed gas components to membrane are basically (H₂O), N₂, CO₂, and O₂
- □ Feed gas at atmospheric pressure, temp. ~50° 70°C

Polymeric membranes for gas separation have been in commercial use since 1980's

Areas of applications:

- ✓ H₂-recovery
- \checkmark Air separation (high purity N₂)
- ✓ CO_2 removal from Natural Gas
- ✓ VOC recovery from gas streams
- Standard polymeric materials are: derivates of cellulose acetate and polyimides
- Separation depends on trade-off between permeability and selectivity (the "upper-bond") and the driving force available

The driving force in a standard membrane

The membrane will separate on basis of:

- Molecular size and structure of gas components
- Physical properties of the gases (ideal / non-ideal)
- Membrane material properties
- Transport mechanism (solution-diffusion in a polymer)
- Process conditions (temperature, pressure, concentrations)

"The upper bond" with respect to driving force for polymer membranes in general

The upper-bond must be broken for the gas pair CO₂-N₂ if membranes are to be used in *post-combustion*.

This can be done in several ways:

- 1) Nanocomposite materials
- 2) Facilitated transport membranes
- 3) Pore tailored inorganic membranes

Two other ways to neglect upper-bond:

- Using membrane contactors
- Innovative process design

Nanocomposite (mixed matrix) membranes the effect of adding nonporous nanoparticles

▲ Barrer et al., *Journal of Polymer Science*, **1**, 1963 □ : Most, *Journal of Applied Polymer Science*, **14**, 1970 2 % *n*-butane / 98% methane feed; upstream pressure = 150 psig; downstream pressure = 0 psig

Merkel et al., Ultrapermeable, Reverse-Selective Nanocomposite Membranes, Science, 296, 519-522 (2002).

PMP = poly(4-methyl-2pentyne), PDMS= poly(dimethyl-siloxane) TS = silica (SiO2) nanoparticles

Nanocomposite material, an example: Crosslinked PMP with FS for air separation

The effect of fumed silica (FS) content on O_2 permeability and O_2/N_2 selectivity of uncrosslinked(\blacklozenge) and crosslinked PMP ($\blacktriangle \diamondsuit$). Crosslinked membranes contain 2 wt% HFBAA; T=35°C. *Ref.: L. Shao, Thesis NTNU 2008*

2) Facilitated transport membranes; general

Several types are available:

- Ion-exchange resins
- Hydrophilic polymers with CO₂-reactive salts
- Polyelectrolytes
- Biomimetic membranes
- Fixed-site carriers
- The category "blue" above, contains a mobile carrier that can react with CO₂ and diffuse acrosss the membrane – typically a supported liquid membrane (SLM)
- In the fixed-site carrier the CO₂-reactive functionality is attached to the polymer backbone, and the CO₂ rather "hops" from site-to-site

Supported (immobilized) liquid membranes

- an illustration

Left: Immobilized liquid membrane, (ILM) microporous polymer Right: Flowing liquid membrane, (FLM) dense polymer

The mobile (aquous) carrier may typically be:

- Carbonates (K, Na)
- Amines
- Glycerol
- Enzymes
- Mixtures thereof

- Upper bond for selected polymers
- Upper bond for some solvents •
- ILM using carbonate glycerol
- ILM hollow fibers using glycerol

Ref.: M.G.Shalyigyn et al. 2008

Fixed-site-carrier membrane – an example, PVAm

 Mechanism of separation: diffusion through a non-porous membrane + carrier transport. The driving force will thus be the partial pressure difference of the gases in the feed and permeate and the concentration difference of the complexed component

$$J_i = \frac{P_i}{l} \left(p_h x_i - p_l y_i \right)$$

$$P = D \cdot S \qquad c_i = S_i \cdot p_i$$

1) Separation by solutiondiffusion

$$J_{i} = \frac{D_{i}}{l} (c_{i,0} - c_{i,l}) + \frac{D_{ic}}{l} (c_{ic,0} - c_{ic,l})$$
 2) Carrier added

Facilitated transport in polyvinylamine (PVAm): -The amino group contributes to transport of CO_2 through membrane as a bicarbonate ion (HCO₃-) in the wet membrane while N₂ is being retained. - CO_2 transport through the membrane is attributed to this carrier effect along with the Fickian diffusion.

The FSC-membrane for CO_2 -capture developed at NTNU is currently being upscaled to a small pilot in collaboration with industry and also demonstrated at EDP power plant, Portugal

This is what we have – large sheets

This is what we want in a pilot – hollow fibers

Process conditions:

- Humidity of gas stream; >75%RH
- Temperature should be below 70°C
- Pressure 2 8 bar

Current results (in lab):

 CO_2 -permeance > 1 m³(STP)/m²·h·bar CO_2/N_2 selectivity > 200

$$J_{A} = \frac{D_{A}}{l} \left(c_{A,0} - c_{A,l} \right) + \frac{D_{AC}}{l} \left(c_{AC,0} - c_{AC,l} \right)$$

¹⁶3) Pore tailored membranes; example: Carbon MS

CaO

10

 10^{0}

 10^{1}

CO₂ permeability [Barrer]

 10^{2}

 10^{3}

10⁴

Other types: Membrane contactor for CO₂-removal

- The membrane function is
 - To be a barrier between the gas and absorbent liquid
- Advantages:
 - Compact system
 - No direct contact between gas and liquid phases
 - Reduces problems such as liquid entrainment and foaming
 - Lower Δp

Pore radius in membrane depends on La Place eq.: ΔP ; over membrane γ ; surface tension of liquid $\cos\theta$; wetting angle

Ref.: figure from the PhD-work of K. N. Seglem

$$r_p = \frac{2\gamma}{\Lambda P} \cos \theta$$

...not only the membrane itself, but also creative process solutions are important..

- Ref.: T.C. Merkel et al., J. Membr. Sci., 359 (1-2) 2010: Two step process, counter-current sweep
- This membrane has a permeance of 1000 GPU (~2.7 m³(STP)/(m²·h·bar)), with only a selectivity CO₂/N₂ = 50 (→ high flux, low selectivity)
- This design dramatically reduces the membrane area and energy demand while also meeting the product spesification for CO₂ purity (> 95%)
- Challenges are in the process design rather than the membrane

Challenges using polymer membranes for CO₂ capture in flue gas streams

CHALLENGES TO BE ADRESSED

- 1. "Standard" polymers may swell
- 2. Driving force may be too low for "standard" membranes
- 3. Durability towards SO₂, NOx, fly ash not good over time
- 4. Permeance or selectivity is too low

ACTIONS

- Materials can be crosslinked, gas may have to be dried
- 2. Work on the process design or redesign the membrane
- 3. FGD must be installed / filters for fly ash
- 4. Still not good enough? WORK ON A DIFFERENT MATERIAL!

Innovation and Creativity

Creative design for materials with optimized separation properties for CO2 is ongoing all over the world – also with the Memfo group at NTNUT

Durability of the FSC-membrane developed at NTNU has been tested, for 500 hours (synthetic flue gas) and currently real flue gas (coal), 2 weeks (ongoing)

<u>Process conditions</u>: P feed 1.05-1.3 bar, permeate vacuum 250-100 mbar, Feed:16 %CO₂ 78% N₂, 5% O₂, 200 ppm SO₂, 200 ppm NOx Temperature: 30°C and 50°C,

Simulations/modeling and experiments should go hand in hand

 IGCC (precombustion) – flow diagram (left) with demands on membrane performance with respect to plant efficiency (right)

Conclusions

- Membranes are clearly one of the emerging technologies for CCS
- There are already pilot testing ongoing (Europe, USA)
- Membranes represent an environmental friendly technology, no solvents – no hazardeous by-products
- Compact, modular solutions with small footprint (area)
- With optimized separation properties (the material), less demand on energy than (current) absorption processes

Thank you for your attention

Acknowledgement to our supporting partners over the years: The Norwegian Research Council (CLIMIT / Gassnova) Statoil NanoGloWa EU-6FWP Our "Memfo" membrane group for good research

