Trondheim CCS Conference 2011

The Norwegian Research Programme CLIMIT: CCS from strategy to reality

Kjell Bendiksen Chair, CLIMIT Program Board

Klaus Schöffel Vice President Gassnova

What will it take to cut global CO_2 -emissions by 50% in 2050 relative to current levels (IEA WEO 2010)?

Why CCS? Three unavoidable reasons:

- CCS provides one option: Not either renewables or CCS but both-and
- CCS may provide a transition technology from a fossil to a sustainable energy era
- CCS needed for industry emissions is as important as for power production

Coal and gas power with CCS The Challenges – What do we have to do?

- 1. Develop and demonstrate *competitive* technologies for mass production,
- 2. Deploy 2-3000 CCS power plants by 2050 and
- 3. Safely take care of 15-20bn tons of CO2 *annually*, say within 2050

Background Norwegian CCS policy

- CCS has been and still is a "hot" political issue in Norway
- Norwegian CCS policy based on Parliamentary Climate Agreement
- Objective: To achieve full scale CCS on Gas power plants and large industrial CO2 point emission sources, and
- Norway should be (and has been) an "Early mover":
 - The Offshore CO2 Tax ⇒ Sleipner, Snøhvit CCS projects
 - Plans for several early CCS projects for EOR, Gas power

Background Norwegian Government CCS Initiatives

- State enterprise Gassnova SF established (2005)
- The CCS RD&D Program CLIMIT established (2005)
- Technology Center Mongstad (TCM) now being completed
- The Mongstad full scale energy plant
- Transport and subsea storage solutions and mapping of relevant sites in progress

The Norwegian CCS RD&D program CLIMIT

- Vision: Accelerate commercialisation of CCS technologies by financial stimulation of RD&D
- A national collaboration between Gassnova SF and RCN
- Promotes and funds R&D and Demo CCS projects on fossil Power and large industrial point emisson sources
- Active international collaboration in CCS RD&D
- Annual budget of ~21 M€

CLIMIT Objectives – Research Challenges

- Develop, demonstrate and verify cost and energy efficient capture processes with low environmental side effects
- Establish a significant R&D project portfolio of new, cutting edge capture technologies (with demos from 2015)
- Contribute to safe and cost efficient transport, storage and monitoring of CO2
- Establish good understanding of environmental side effects in the CO2 value chain for licensing procedures
- Contribute to identify and close technology gaps in the CCS value chain
- Support commercialization of technologies, methods and services

The CLIMIT Program: A Cooperation between Gassnova and RCN covering the entire value chain

CLIMIT Funding Distribution (MNOK)

Type of Project Areas

CO₂ Technology Centre Mongstad (TCM)

Amine Plant

Carbonate Plant

 CO_2

Two off-gas sources and Two capture technologies:

3.5% CO₂

13% CO₂

From CHP

CCGT

RCC

CLIMI

From Refinery

14-1 de

 CO_2

TCM Capacity: 100.000 t/yr CO₂

Examples of CLIMIT Projects

3C - Compact CO₂ Capture

Project Type: Industrial development (2008-2012)

- Responsible: Statoil
- Budget: 64,6 MNOK (32,2 MNOK from CLIMIT)
- Project Targets
 - Reduce CAPEX by 40-50% (Compared to BAT)
 - Reduce OPEX by 30-40%
 - Low environmental footprint capture facility

Example of CLIMIT Projects

Geological Storage of CO₂: Mathematical Modelling and Risk Assessment (Matmora)

- R&D Project (KMB: 2007-2011)
 - Responsible: University of Bergen
 - Budget: 20,5 MNOK CLIMIT Support: 16 MNOK
- Results
 - Improved understanding of storage mechanisms
 - New modelling tools show that dissolution of CO₂ in water may be a more important trapping mechanism than earlier assumed
 - Faster simulations
 - 2D-models based on vertical equilibrium show accurate results. This enables 10 to 100 times faster simulation time compared with traditional 3D models

Examples of CLIMIT Projects

CO₂ Field lab for monitoring and safety assessment

Responsible: SINTEF

- Partners: NGI, BRGM, Schlumberger, Beurau Veritas, British Geological Survey, Geosciences Montpelliers, ImGeau, UiO, Ruden AS, Shell
- Site: Svelvik (south of Oslo)
- Budget: 95 MNOK (49 MNOK from CLIMIT)
- Targets
 - Injection of CO₂ into a 300m thick glacial morain
 - Study CO₂ flow and simulation of shallow leakages
 - Validation og monitoring methods
- Focus: Monitoring, public acceptance

Example of CLIMIT Projects

HSE related Amine emissions from Capture plants

- Several projects on Amine Emissions to Air During Carbon Capture
- Total Budget: 7M€ (since 2008)
 - Example: Atmospheric Degradation of Amines (ADA: 2008-2011)
 - Responsible: NILU and University of Oslo
- Project results
 - MEA (MonoEthanolAmine) itself is not problematic
 - MEA degradation in the atmosphere does not give nitrosamines
 - MEA degradation in atmosphere gives nitramine
 - Expected lower toxicity than nitrosamines
 - Small amounts of alkyl amines found in solvent
 - Nitrosamines has short lifetime in the atmosphere gas

Road map for implementation: Government role in CCS – An optimistic view

Challenges in commercialization:

EU SET Plan CCS Energy Industry Initiative

Objective: 10-12 CCS demo and full scale plants by 2020

Additional Cost for CCS, per ton CO2

Demo by 2015, Full scale by 2020, Emerging market by 2030??

Conclusions

- CLIMIT has a large project portfolio that covers the entire CCS development and value chains: RD&D in Capture, Transport and Storage
- CLIMIT Contributes to identify and close technology gaps in the CCS value chain
- CLIMIT Supports commercialization of technologies, methods and services and has "close to market" activities
- CLIMIT offers access to a professional and experienced network and secretariat
- CLIMIT provides substantial financial support to good projects

Thank you for your attention!

CLIMIT Contact information

www.climit.no

post@climit.no

Vice President Klaus Schöffel Phone: +47 913 42 329 ks@gassnova.no

Gassnova SF

Dokkvegen 10 NO-3920 Porsgrunn

Phone: +47 40 00 59 08 info@gassnova.no www.gassnova.no

The Research Council of Norway

Stensberggata 26 PO 2700, St.Hanshaugen NO-0131 Oslo

Phone: +47 22 03 70 00 post@forskningsradet.no www.forskningsradet.no Coordinator Special Advisor Aage Stangeland Phone: +47 22 03 73 47 aas@forskningsradet.no

