Dynamic permeability due to physical coupling of reactive CO₂-flow and deformation

Nina Simon^{1,2} Yuri Y. Podladchikov³ and Harald Johansen¹

¹Miljøteknologi, Institutt for Energiteknikk, Kjeller, Norway

²Institutt for geovitenskap, Universitetet i Bergen, Norway

³Faculté des géosciences et de l'environnement, Université de Lausanne, Switzerland

Outline

- 1) Evidence for dynamic permeability from data
- 2) What causes dynamic permeability?
 - 1) Permeability variations in space: pre-existing heterogeneity
 - 2) Permeability changes in time (and space):
 - 1) Fracturing/rock failure
 - 2) Dissolution
 - 3) Elastic response to stress changes
 - 4) Compaction: elastic, plastic, viscous
 - 5) Precipitation
- 3) How to model dynamic permeability during flow in a reservoir?
- 4) The porosity wave model: captures opening and closing of porosity as a response to variations in effective pressure (and reactions).
- 5) At which parameters do we expect porosity waves to occur in CO₂ storage operations?

Dynamic permeability: evidence from data

Dynamic permeability: evidence from data

Opening of pore space: permeability increase

(Micro)fracturing

Radial microfractures Upper Devonian reservoirs, deep Alberta basin (Márquez and Mountjoy, 1996).

Dissolution

Figure 3—Scanning electron microscopy (SEM) and thin section photomicrographs from well 22/30a-1 showing extensive secondary porosity. (a) Thin section photomicrograph (plane-polarized light) showing several secondary pores after feldspar; scale har = 100 µm, depth 4665.8 m. (b) SEM photomicrograph showing a highly corroded alkali feldspar; scale har = 30 µm, depth 467.2 m.

Wilkinson et al., 1997

Closure of pore space: permeability decrease

Flow-reaction-deformation experiments show closure of pores/fractures by pressure solution creep and compaction

Change in hydraulic aperture with time for a circulation test on a fracture in novaculite. Test is conducted at incremented temperatures but constant stress (POLAK et al., 2003).

Polak et al., 2003; Yasuhara et al., 2004; Elsworth and Yasuhara, 2006

What is the effect of coupled fluid flow, deformation (elastic and microfracturing) and reactions (chemical compaction)?

- → dynamic opening and closure of pores and therefore permeability changes
 - **→** dynamic reorganization of flow

How can we model all this in ONE continuum model?

Porosity waves: fluid flow in a deformable medium

Flow is driven by a pressure difference (in the simplest case buoyancy) and by compaction of the pores. Non-linear coupling between porosity and permeability and permeability and pressure leads to instabilities and focusing of flow.

Equations (and assumptions)

Mass balance
$$\frac{\partial (1-\varphi)}{\partial t} + \nabla ((1-\varphi)v_s) = 0 \qquad \frac{\partial \varphi}{\partial t} + \nabla (\varphi v_f) = 0 \qquad \frac{d\rho_s}{dt} = \frac{d\rho_f}{dt} = 0$$
 fluid

Force balance
$$\frac{\partial \overline{\sigma}_{ij}}{\partial x_i} = \frac{\partial \sigma_{ij}^{eff}}{\partial x_i} - \frac{\partial p_f}{\partial x_i} = g \left[(1 - \varphi) \rho_s + \varphi \rho_f \right] \hat{z}$$
 $P_{eff} = P_f - \overline{P}$

Darcy's law
$$\varphi(v_f - v_s) = -\frac{k(\varphi)}{\mu_f} \nabla (p_f + \rho_f gz)$$

Rheology
$$\frac{1}{\varphi(1-\varphi)} \frac{d\varphi}{dt} = \frac{P_{eff}}{\eta(\varphi, P_{eff})} + \frac{1}{\beta(\varphi)} \frac{dP_{eff}}{dt}$$
visco-plastic elastic

Yarushina, 2010

Simplified and in 1D: 2 equations, 2 unknowns

$$I \frac{\partial \varphi}{\partial t} = -\frac{\partial}{\partial z} \left(\frac{k(\varphi)}{\mu_f} \cdot \left(\frac{\partial P_e}{\partial z} + \Delta \rho g \right) \right) \quad II \frac{\partial P_e}{\partial t} = \frac{1}{\beta(\varphi)} \left(\frac{\partial \varphi}{\partial t} - \frac{P_e}{\eta(\varphi)} \right)$$

$$k(\varphi) = k_0 \cdot \left(\frac{\varphi}{\varphi_0}\right)^n$$
, $n = 3$; $\beta(\varphi) = \varphi^b \cdot \beta_0$, $b = 1/2$ and $\eta(\varphi) = \frac{\eta_s}{\varphi^m}$, $m = 1$.

Modeling deformation and fluid flow

visco-elastic porosity waves, 2D

Rheology: opening of pores much easier than closure

Connolly & Podladchikov, 2007

Modeling deformation and fluid flow

Modeling deformation and fluid flow

Porosity waves: relevant for CO₂ storage?

Dimensional analysis and parameter-check

Characteristic length-scale: compaction length $L^* = \sqrt{\frac{k_0 \eta_s}{\varphi_0 \mu_s}}$

Characteristic pressure $p^* = \Delta \rho g^* L^*$

Characteristic time $t^* = \frac{\eta_s}{p^*}$

with $k_0 \approx 10^{-15} m^2$, $\varphi_0 \approx 0.1$, $\mu_f \approx 10^{-4} Pa \cdot s$ we need

$$\eta_s \approx 10^{15} Pa \cdot s$$

to get $L^* = 100m$ and $t^* = 21years$

If η_{decomp} =0.1-0.0001 η_{comp} , and/or p^* is higher than buoyancy pressure, timescales will reduce significantly.

Reaction-induced viscosity from experiments

Le Guen et al., 2007

Figure 5. Vertical axial strain deformation measured for Lavoux W526 sample in the absence of fluid and during injection of high P_{co_2} saline fluid (cyan curve). Time periods with no data represent non-stable conditions associated with parameter changes. The red time period $\dot{\epsilon}$ includes a short flow period. Note that the renewed injection of high P_{co_2} saline solution caused a large increase in $\dot{\epsilon}$, but after time lag of \approx 40 days. The end of the experiment was marked by a sudden, rapid increase in strain and strain rate.

Reaction-induced viscosity from experiments

Le Guen et al., 2007

Table 2. Experimental Parameters During Compaction

Rock sample	Estaillades		Lavoux W526	Lavoux W520	Sandstone
Fluid Pco2	low Pco2	high Pco2	high Pco2	low Pco2	high Pco2
σ_1 (MPa)	8.9	10.0	16.3	16.3	16.0
σ_3 (MPa)	7.3	8.5	12.0	11.6	10.2
pf (MPa)	5.9	7.8	7.9	7.9	8.3
$\sigma_{\rm e}$ (MPa)	3.0	2.2	8.4	8.4	7.7
P_{co_2} (MPa)	$10^{-4.5}$	7.8	7.9	$10^{-4.5}$	8.3
T (°C)	25	80	40	40	40
[NaCl] (mol l^{-1})	0	0	10^{-2}	10^{-2}	10^{-2}
Fluid flow (m ³ s ⁻¹)	8.33×10^{-11}				
Residence time (h)	20.5	20.5	12.8	14.0	10.0
Fluid velocity (m s ⁻¹)	6×10^{-7}	6×10^{-7}	1×10^{-6}	9×10^{-7}	1.4×10^{-6}

Table 3. Average Strain Rates With Indicated Time Ranges

	Dry (s ⁻¹)	Low P _{co2} fluid flow (s ⁻¹)	Low P _{co2} no flow (s ⁻¹)	High P _{co2} fluid flow (s ⁻¹)	High P _{co2} no flow (s ⁻¹)
Estaillades	1.0×10^{-12}	1.9×10^{-11}	_	1.0×10^{-10}	3.0×10^{-11}
	days 35-58	days 198-221	1-	days 366-370	days 475-495
Lavoux-W526	≈0	_	_	4.5×10^{-10}	1.0×10^{-10}
	day 53-74			day 209-258	day 120-175
Lavoux-W520	1.1×10^{-11}	2.6×10^{-10}	8.1×10^{-11}	_	_
	day 26-41	day 231-282	day 200-230		
Sandstone	_	_	-	2.3×10^{-11}	4.6×10^{-12}
				day 59-134	day 153-161

Reaction-induced viscosity from experiments

Le Guen et al., 2007

Table 2. Experimental Parameters During Compaction

Rock sample	Estai	llades	Lavoux W526	Lavoux W520	Sandstone
Fluid Pco2	low Pco2	high Pco2	high Pco2	low Pco2	high Pco2
σ_1 (MPa) σ_3 (MPa) p_f (MPa) σ_e (MPa)	$\begin{array}{ccc} 3.0 \\ 10^{-4} & \sigma = \\ 25 & 0 \\ 8.33 \times 1 & \mu = \\ 20.5 & & & & & & & & & & & & & & & & & & &$	ear viscosity $= \mu \cdot \dot{\varepsilon}$ $= \sigma / \dot{\varepsilon}$ $= 16 \cdot 10^6 Pa / \varepsilon$	$7:$ $2.3 \cdot 10^{-11} s^{-1}$	$ \begin{array}{r} 16.3 \\ 11.6 \\ 7.9 \\ 8.4 \\ 10^{-4.5} \\ 40 \\ 10^{-2} \\ 8.33 \times 10^{-11} \\ 14.0 \\ 9 \times 10^{-7} \end{array} $	$ \begin{array}{r} 16.0 \\ 10.2 \\ 8.3 \\ 7.7 \\ 8.3 \\ 40 \\ 10^{-2} \\ 8.33 \times 10^{-11} \\ 10.0 \\ 1.4 \times 10^{-6} \end{array} $
Table 3. Average Strain Dry (s	Rates with I	$\approx 10^{17} Pa$		fluid flow (s ⁻¹)	High P _{co2} no flow (s
Estaillades 1.0 × 1 days 35	_58		_	× 10 ⁻¹⁰ 366-370	3.0×10^{-11} days 475-495
Lavoux-W526 ≈0 day 53- Lavoux-W520 1.1 × 1	. ₇₄ at ∠	₩°C for san	dstone	$\times 10^{-10}$ $209-258$	1.0×10^{-10} day $120 - 175$

day 200-230

 4.6×10^{-12}

day 153-161

 2.3×10^{-11}

day 59-134

Sandstone

day 26-41

day 231-282

Summary

- Permeability is expected to change dynamically in a reservoir during flow, in particular if reactive CO₂-rich fluids are involved.
- Coupling between flow, reactions and deformation leads to effectively visco-elasto-plastic rheology.
- Fluid focusing due to non-linear coupling leading to instabilities can be modeled as porosity waves.
- Preliminary results indicate that porosity waves/ fluid focusing and enhanced tranport may occur in reservoir operations, in particular in low-permeability rocks.
- → This may enhance injectivity, but also increase the risk for leakage.
- → We need more theoretical and experimental investigations of coupled fluid flow, reactions and deformation, and comparison to reservoir data.

