

Multiphase flow of CO₂ and water in reservoir rocks at reservoir conditions

Ronny Pini, Sam Krevor, Lin Zuo, Sally Benson Department of Energy Resources Engineering Stanford University

Multiphase flow properties

sample collection

relative permeability

Core flooding experiments

capillary pressure

Core-flooding experiments

- Replicate reservoir conditions
 - P_{pore} : 9 MPa
 - P_{conf}: 11.8 MPa
 - T: 50C
- Continuous circulation
- Immiscible displacement
- Experimental variables:
 - Flow rates
 - Pressure drop
 - Saturation (CT scanner)

CO₂/Water ISCO pumps

Perrin J-C. and Benson S., Trans Porous Media. 2010, 82, 93-109

Multiphase flow properties

relative permeability

Core flooding experiments

capillary pressure

Relative permeability

Steady state method

$$u_{i} = -\frac{kk_{ri}(S_{i})}{\mu_{i}} \frac{dP_{i}}{dz} \xrightarrow{S_{i} = \text{constant}} \rightarrow \frac{dP_{c}}{dz} = 0$$

$$to steady state \qquad t_{i} = -\frac{kk_{ri}(S_{i})}{\mu_{i}} \frac{\Delta P}{L}$$

Rock samples

- Sandstones
- Berea: "model" rock
- Others: target CO₂ storage reservoirs

Name	Porosity [-]	Absolute Permeability [mD]	
Berea Paaratte Mt. Simon Tuscaloosa	22.1 28.3 24.4 23.6	914 1156 7.5 220	

Relative permeability - Results

• Flow rate:

$$q_{\rm t} = 10 - 15 \, \rm ml/min$$

$$f_{\text{CO2}} = \frac{q_{\text{CO2}}}{q_{\text{t}}} = 0.1 - 1$$

- Steady-state: 5 PVI
- 100% CO₂ injection alternative technique*
- → Flat saturation profiles
- → Core heterogeneity

CO₂ saturation profiles

^{*}Ramakrishnan T.S. and A. Cappiello, Chem. Eng. Sci. 1991, 46(4), 1157-1163

Relative permeability curves

$$k_{ri}(S_i) = -\frac{L\mu_i u_i}{\Delta P k}$$

- Features are qualitatively predicted from MICP measurements
- Typical behavior of a strongly water-wet gas/water system
- Viscosity ratio controls endpoint saturation ($f_{CO2}=1$)

Krevor S. et al., Water Resources Research 2011, submitted

Multiphase flow properties

relative permeability

no of devolutions

Core flooding experiments

capillary pressure

The method

Capillary pressure measurement during a core-flooding experiment

Darcy's law:
$$u = -\frac{k}{\mu} \frac{\Delta P}{L}$$

The method

Capillary pressure measurement during a core-flooding experiment

Steady state:
$$u_w = 0 \implies \frac{dP}{dz} = \frac{dP_c}{dz} \implies \Delta P = P_c\big|_{z=0}$$

Experiment - Pressure drop

- Berea (280 mD)
- Flow rates:
 - 1 50 ml/min
- Injection of 5 PVI for each step
- Average over the last 1 PVI
- Viscosity
 - 298 K: 7.1 10⁻⁵ Pa s
 - 323 K: 2.3 10⁻⁵ Pa s

Experiment – CT scan (323 K)

Experiment – CT scan (298 K)

Capillary pressure curve

$$P_{\rm c,CO2/w} = P_{\rm c,m/a} \frac{\sigma_{\rm CO2/w} \cos \theta_{\rm CO2/w}}{\sigma_{\rm m/a} \cos \theta_{\rm m/a}}$$

CA:
$$\theta_{\text{CO2/w}} = 180^{\circ}$$
 $\theta_{\text{m/a}} = 140^{\circ}$

IFT:
$$\sigma_{m/a} = 485 \text{ mN/m}$$

$\sigma_{ m CO2/w} [m mN/m]$	298 K	323 K
Fit (exps.)	28.1	38.7
Literature*	29.5	35.5

^{*} Georgiadis A. et al, *J. Chem. Eng. Data* **2010,** *55,* 4168–4175 Chiquet P. et al., *Energy Convers. Manage.* **2007,** *48,* 736–744

Capillary pressure - heterogeneity

At the sub-core scale, a saturation distribution can be associated to a given capillary pressure

CT scan precision - assessment

Subtracting two scans

*120 kV, 200 mA, 25 DFOV

Normal distribution

$$N(\mu,\sigma^2)$$

- Random error
 - → averaging helps!
- Error propagation

$$c = f(a,b) \rightarrow \sigma_c^2 = \sigma_a^2 \left(\frac{\partial c}{\partial a}\right)^2 + \sigma_b^2 \left(\frac{\partial c}{\partial b}\right)^2$$

CT scan precision - assessment

$$S = \frac{CT_{\text{ws/r}} - CT_{\text{wsg/r}}}{CT_{\text{ws/r}} - CT_{\text{g/r}}} \quad \text{with } CT_{i/r} \text{ affected by } \sigma_{\text{pix}}$$

$$\sigma_{S} = \frac{\sqrt{2}\sigma_{\text{pix}}}{CT_{\text{ws/r}} - CT_{\text{g/r}}} \underbrace{\sqrt{1 + \left(\frac{CT_{\text{ws/r}} - CT_{\text{wsg/r}}}{CT_{\text{ws/r}} - CT_{\text{g/r}}}\right)^{2}}}_{\approx 1}$$

Uncertainty	$\sigma_{\mathrm{S,1}}$	$\sigma_{ m S,20}$
1×1	0.22	0.049
3 × 3	0.13	0.03
5 × 5	0.077	0.017

Experiment – CT scan (323 K)

Inlet slice $(20x) - CO_2$ saturation

Experiment – CT scan (323 K)

Inlet slice $(20x + 5x5) - CO_2$ saturation

Capillary pressure - heterogeneity

- Coarsening
 - 5 x 5
- Pixel size:
 - 2.5 x 2.5 mm
- Uncertainty *S*
 - $\sigma_{\rm S} = 1.7\%$ (abs.)

Each pixel possesses a unique capillary pressure curve!

Concluding remarks

- CO₂/water relative permeability and capillary pressure curves have been measured on reservoir rocks at reservoir conditions
- Generally, results are typical for a strongly water-wet system
- Relative permeability:
 - Low CO₂:water viscosity ratio results in low CO₂ saturations and accordingly low relative permeability
- Capillary pressure:
 - Results are consistent with MICP and expectations from changes in temperature
 - The technique allows to assess and quantify the heterogeneity of the capillary pressure at the sub-core scale