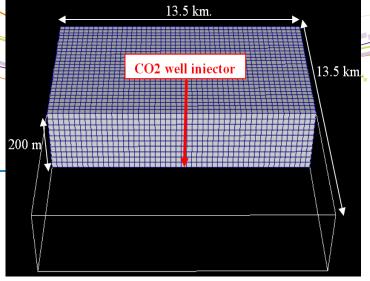
Water Production associated to CO₂ injection into a saline aquifer


- Model setup and parameters
- Overpressure and CO₂ Storage Capacity Management
 - Stopping CO2 injection
 - Resident brine production
- Water Production Management
 - Desalination of the resident water production
 - Residual concentrated brine reinjection
- Economical aspects
- Final Conclusions

Model set up

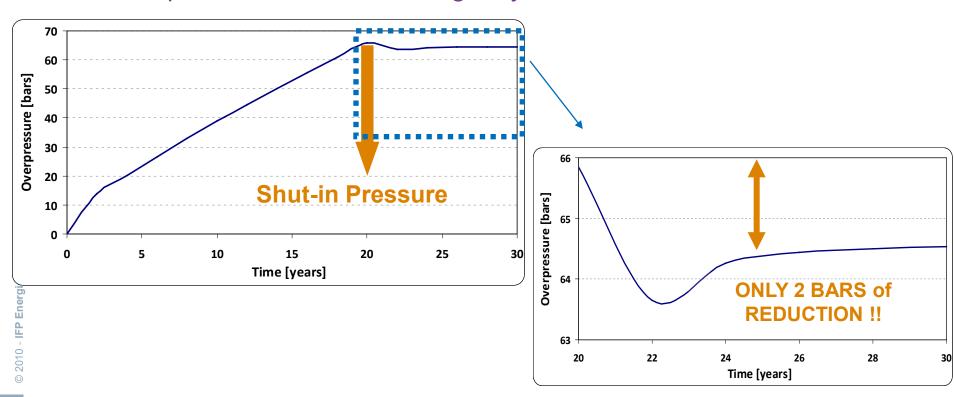
Parameters and Conditions	Average Value
Porosity [%]	20
Permeability [mD]	200
Anisotropy ratio	0.1
Thickness [m]	200
Initial reservoir temperature Thickness [°C]	70
Initial reservoir pressure Thickness [bar]	100 at 1000m
Rock compressibility Thickness [1/bar]	4.35E-5
Irreducible water saturation [%]	15
Critical gas saturation [%]	5
Maximum water relative permeability	0.9
Maximum gas relative permeability	0.55
Salinity [g/l]	50

Grid

	X	у	Z
Number	50	50	10
Length (m)	250	250	20

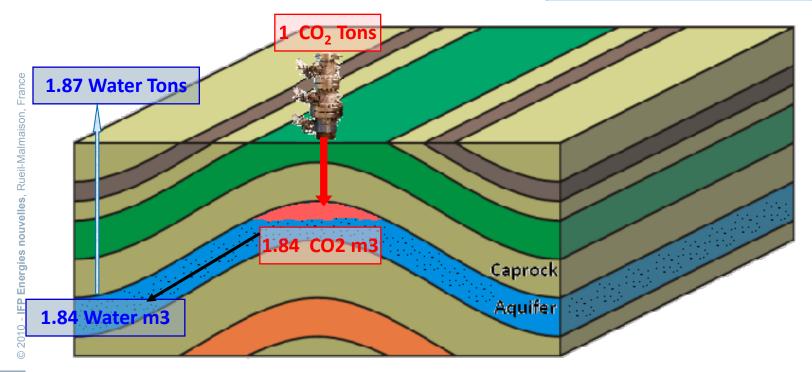
Boundaries

- No flow conditions for every one.
- No heat and fluid exchange with the upper and lower layers


- Model setup and parameters
- Overpressure and CO₂ Storage Capacity Management
 - Stopping CO2 injection
 - Resident brine production
- Water Production Management
 - Desalination of the resident water production
 - Residual concentrated brine reinjection
- Economical aspects
- Final Conclusions

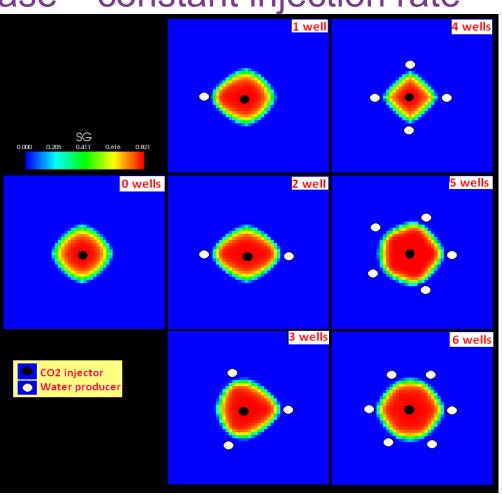
Solution 1: Stopping CO₂ injection

- Conditions
 - 1 Mt/y CO₂ during 20 years
 - Overpressure evolution during 10 years



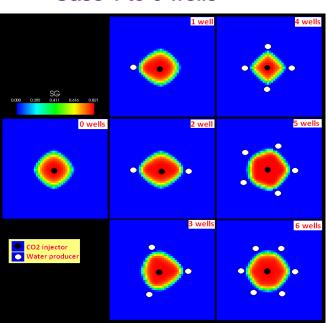
Idea: Avoiding overpressure

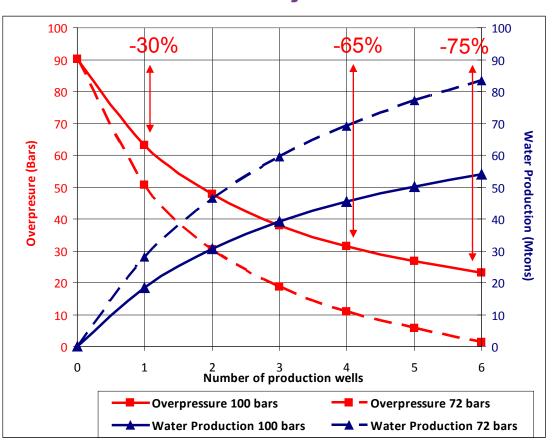
Reservoir pressure	138.5 bars
Reservoir temperature	70 °c
Rho Water – res. conditions	1.02 g/cm3
Rho Gaz – res. conditions	0.543 g/cm3



Overpressure decrease – constant injection rate

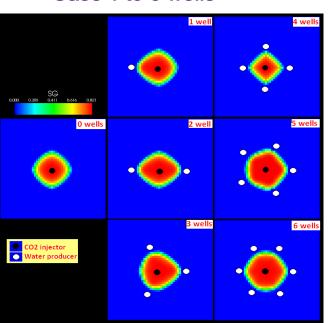
- Simulation parameters
 - 1500 m Injector-producers
 - 1 Mt/y CO₂ during 30 years
 - BHFP producers 100/72bars
 - Case 1 to 6 wells

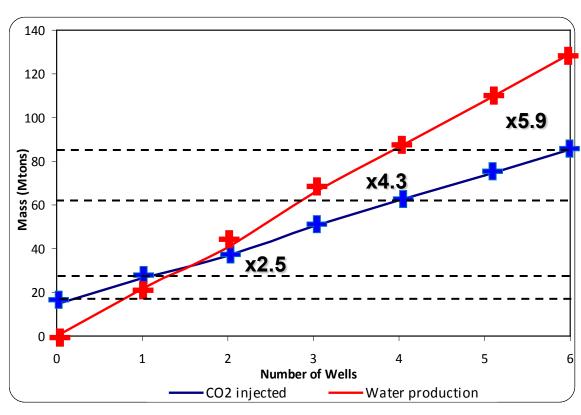




Overpressure decrease – constant injection rate

- Simulation parameters
 - 1500 m Injector-producers
 - 1 Mt/y CO₂ during 30 years
 - BHFP producers 100/72bars
 - Case 1 to 6 wells


2010 - IFP Energies nouvelles, Rueil-Malmaison, France

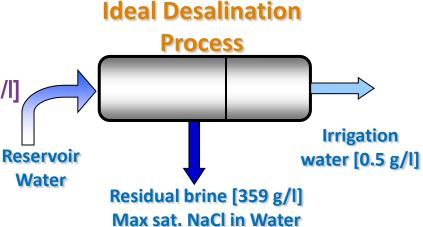


CO2 storage capacity increase – constant injection pressure

- Simulation parameters
 - 1500 m Injector-producers
 - 50 bars overpressure allowed
 - BHFP producers 100 bars
 - Case 1 to 6 wells

2010 - IFP Energies nouvelles, Rueil-Malmaison, France

- Model setup and parameters
- Overpressure and CO₂ Storage Capacity Management
 - Stopping CO2 injection
 - Resident brine production
- Water Production Management
 - Desalination of the resident water production
 - Residual concentrated brine reinjection
- Economical aspects
- Final Conclusions

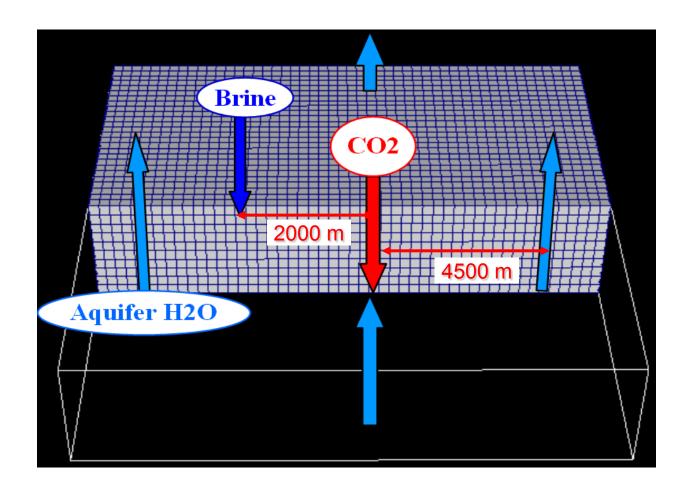


Desalination of the resident water production

- Technologies
 - Reverse Osmosis (47%) [40-50 g/l]
 - Multi-stage Distillation (37%) [> 50 g/l]
 - Nanofiltration (16%)

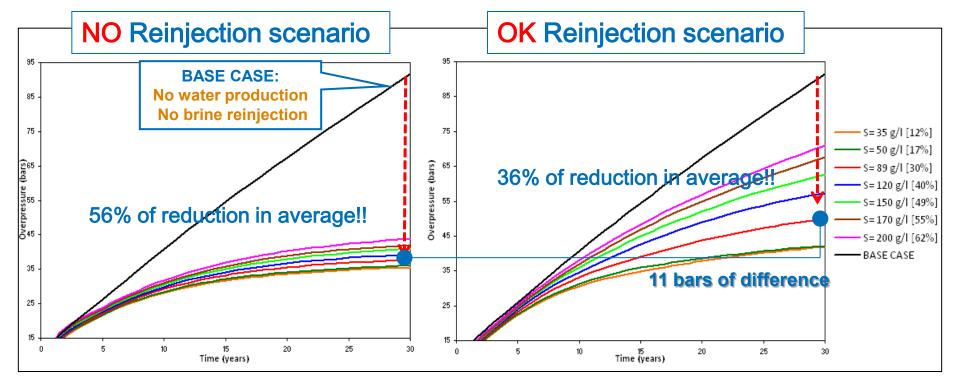
- Always residual concentrated brine
 - Reject to the sea
 - Take into account the local policies
 - Reinjection in geological formation

Reservoir salinity [g/l]	Resid. brine Re-injected Mass [%]	Irrigation water Mass [%]
35	12	88
50	17	83
89	30	70
120	40	60
150	49	51
170	55	45
200	62	38



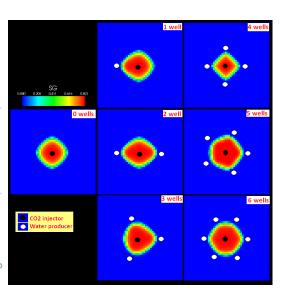
Simulation

Model



Simulation

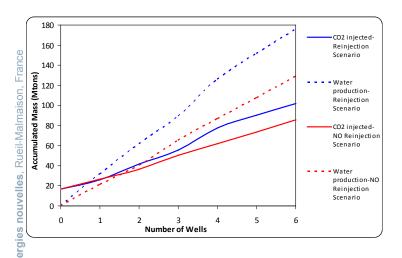
- Both scenarios have the same water production history
- OK Reinjection scenario
 - 5 spot model
 - 1 Mt/y CO₂
 - 30 y simulation





Simulation

- CO2 capacity for NO reinjection and OK reinjection Scenario
 - Maximum Overpressure allowed is 50 bars

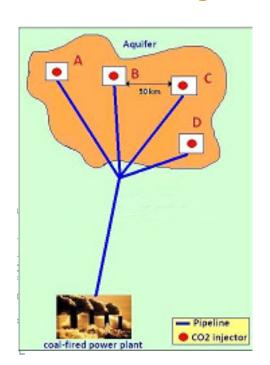


Simulation

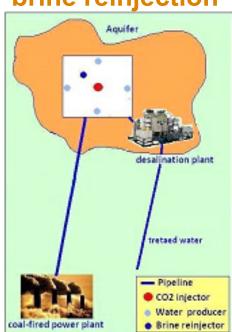
- CO2 capacity for NO reinjection and OK reinjection Scenario
 - Maximum Overpressure allowed is 50 bars

	NO Reinjection Scenario	OK Reinjection Scenario
Number of wells	Comparison with zero wells case (CO2 injected mass)	Comparison with zero wells case (CO2 injected mass)
0	1,00	1,00
1	1,82	1,55
2	2,53	2,45
3	3,49	3,27
4	4,30	4,57
3	5,09	5,32
6	5,91	5,98

5 spot configuration

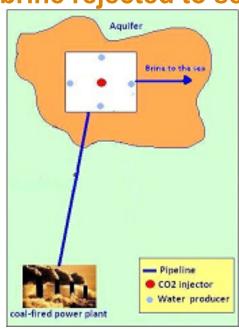

- Model setup and parameters
- Overpressure and CO₂ Storage Capacity Management
 - Stopping CO2 injection
 - Resident brine production
- Water Production Management
 - Desalination of the resident water production
 - Residual concentrated brine reinjection
- Economical aspects
- Final Conclusions

Scenarios 100Mt CO₂ injected


Passive Management

300 km pipe (100 km + 4x50km)

4 sites: 4 CO₂ injection wells need rig move


Active Management"brine reinjection"

200 km pipe (100 km + 100km)

1 site :1 CO₂ injection well 4 prod. well 1 Wat prod. well

Active Management "brine rejected to sea"

150 km pipe (100 km + 50km)

1 site :1 CO₂ injection well 4 prod. well

ONSHORE Economical Analysis

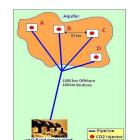
PCRM Scenario 4 CO2 injector				
Expenses (M€)			(€/t	on)
CO2 Capture		4000.0		40.0
Onshore transport	318.0		3.2	
Offshore transport	0.0		0.0	
Transport		318.0		3.2
Caracterisation cost	40.8		0.4	
Drilling cost	9.7		0.1	
Monitoring cost	196.0		2.0	
CO2 Storage		246.5		2.5
Water Desalination Cost - primary treatment		0		0
Water treatement Cost - secondary treatment		0		0
total expenses including industrial water		4564.5		45.6
total expenses including drinkable water		4564.5		45.6

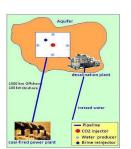
Revenues (M€)		(€/ton)
CO2 avoided	3000.0	30.0
ndustrial Water Revenue	0.0	0.0
Irinkable Water Revenue	0.0	0.0
total revenues including industrial water	3000.0	30.0
total revenues including drinkable water	3000.0	30.0
•		

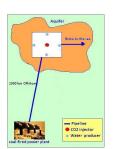
CO2 Capture + Transport + Storage Balance	(M€)	(€/ton)
Total cost	4564.5	45.6
Cost - Total revenues (CO2+industrial Water)	1564.5	15.6
Cost - Total revenues (CO2+drinkable Water)	1564.5	15.6

Expenses (M€)	(€/ton)	
CO2 Capture	4000.0	40.0
Onshore transport	212.0	2.1
Offshore transport	0.0	0.0
Transport	212.0	2.1
Caracterisation cost	10.2	0.1
Drilling cost	11.5	0.1
Monitoring cost	49.0	0.5
CO2 Storage	70.7	0.7
Water Desalination Cost - primary treatment	126	1.3
Water treatement Cost - secondary treatment	239.4	2.4
total expenses including industrial water	4408.7	44.1
total expenses including drinkable water	4648.1	46.5

ACRM Scenario (Brine reinjection)

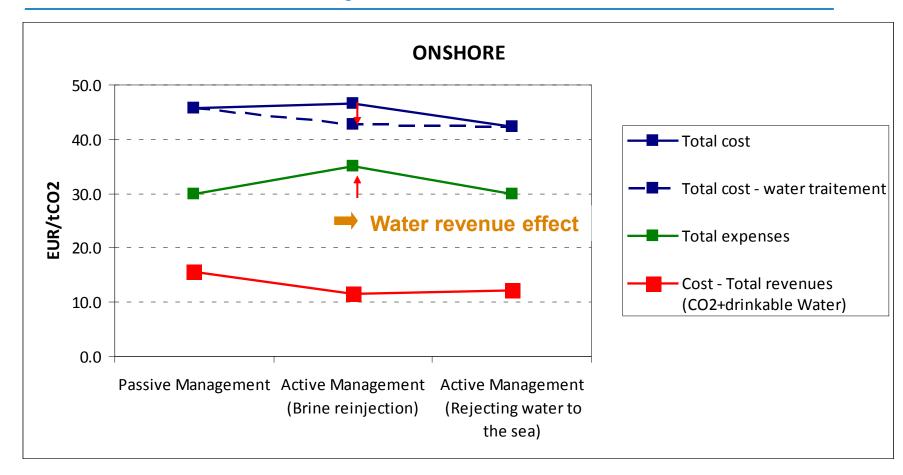

Revenues (M€)		(€/ton)	
CO2 avoided	3000.0	30.0	
Industrial Water Revenue	55.9	0.6	
drinkable Water Revenue	503.1	5.0	
total revenues including industrial water	3055.9	30.6	
total revenues including drinkable water	3503.1	35.0	


CO2 Capture + Transport + Storage Balance	(M€)	(€/ton)
Total cost	4648.1	46.5
Cost - Total revenues (CO2+industrial Water)	1592.2	15.9
Cost - Total revenues (CO2+drinkable Water)	1145.0	11.5


Expenses (M€)		(€/ton)
CO2 Capture	4000.0	40
Onshore transport	159.0	1.6
Offshore transport	0.0	0.0
Transport	159.0	1
Caracterisation cost	10.2	0.1
Drilling cost	9.7	0.1
Monitoring cost	49.0	0.5
CO2 Storage	68.9	0
Water Desalination Cost - primary treatment	0	0
Water treatement Cost - secondary treatment	0	0
total expenses including industrial water	4227.9	42
total expenses including drinkable water	4227.9	42

Revenues (M€)		(€/ton)
CO2 avoided	3000.0	30.0
Industrial Water Revenue	0.0	0.0
drinkable Water Revenue	0.0	0.0
total revenues including industrial water	3000.0	30.0
total revenues including drinkable water	3000.0	30.0

CO2 Capture + Transport + Storage Balance	(M€)	(€/ton)
Total cost	4227.9	42.3
Cost - Total revenues (CO2+industrial Water)	1227.9	12.3
Cost - Total revenues (CO2+drinkable Water)	1227.9	12.3



Economical Analysis – Summarize Onshore

- Model setup and parameters
- Overpressure and CO₂ Storage Capacity Management
 - Stopping CO2 injection
 - Resident brine production
- Water Production Management
 - Desalination of the resident water production
 - Residual concentrated brine reinjection
- Economical aspects
- Final Conclusions

Final conclusions

- Water production decreases largely reservoir overpressure
- Water production increases largely CO₂ storage capacity
- Effects in overpressure and storage capacity from brine reinjection are not considerable
- Active reservoir management could be economically feasible,
 comparing with passive management.

Innovating for energy

www.ifpenergiesnouvelles.com