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@) Outline

MUSTANG project at large

Heletz injection experiment

e Background and objectives

e Experimental setup

e Results of the predictive modeling

e Where we are now and the time table
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C@z MUSTANG project (www.co2mustang.eu)

* MUSTANG is a large scale integrating
FP7 project, 19 partners, 24 affiliated
organizatons

» develop methodology and understandikg
for the quantification of saline aquifers
for CO2 geological storage

e 7 test sites, one deep injection 3
experiment and one shallow injection {E B
experiment, as well as strong laboratory L

experiment, process understanding and 7
modeling components 7
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C@z Background to Heletz injection experiment

e Predictions regarding the storage potential
and the trapping mechanisms for geological
storage of CO,, rely on model simulations

e Models need careful validation through
well-controlled CO, injection experiments



Heletz site

U Well-characterized lower Cretacious sandstone
UTarget layer at about 1500 m depth

U New well will be drilled to obtain suitable dipole for experiment
(a) Heletz (b) Heletz East (c) Around H-18
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Heletz site - Geology
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(@, Heletz site - Target layers

GEOLOGICAL AND GEOPHYSICAL INTERPRETATION OF WELL DATA

Well Type: oil
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4

SEVENTH FRAMEWORK
PROGRAMME



Objectives of the experiment

Develop and validate a methodology for estimating
two key trapping mechanisms of the stored CO,
(residual trapping and dissolution) at field scale.

Estimate the magnitude of the mixing of the stored CO,
with the formation fluid.

Assess the Iimpact of heterogeneity on the
evaluation of these parameters.

Construct comprehensive datasets to be used for
model validation.

Test novel and traditional MMV (Measurement,
Monitoring and Validation) technologies.
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@) Main CO2 injection scenarios

3 injection-withdrawal of scCO2

1. push-pull and brine

0 Reduced
influence of
formation
heterogeneity

zone of residual trapped scCO,
rine, CO2

l sc CO,

2. dipole

0 Heterogeneity affects
migration and trapping
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Steps prior to injection experiment

e Re-entry of an existing well (H18, H35).
e Drilling of a new well at distance of 30-70 meters.

e Instrumentation of the wells (design by UU, EWRE,
VIBROMETRIC and SOLEEXPERTS).

e Monitoring and measurement technologies:

> pressure and temperature sensors with online data acquisition
system,

> optical fiber for continuous temperature measurement,

> fluid sampling at various horizons (preserving the in depth
pressure conditions),

» geophones to be installed in the wells and

» seismic survey on the ground.

e Laboratory facilities on site
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Injection / monitoring wells
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C@z Tests to be done

Pre-injection characterization

e Single-well hydraulic tests, flow logging, thermal logging
and push-pull tracer tests

e Hydraulic and tracer tests in the two-well system
CO2 injection

e Push-pull (single-well) experiment of water, CO, and
tracers in the water and the CO,

e Injection of water and CO, in a directed flow system
(established by pumping in the monitoring well)

Supporting laboratory testing

e Rock properties, fluid samples at
in-situ conditions

Geophyscical monitoring

~1600 m

“~50m

-
. T, Q, fluid
P.T. Q, fluid sampling
sampling

Contributing: EWRE, UU, Lapidoth, GII, UGOTT, KIT, CNRS,

ImaGeau, CSIC, Vibrometric, UEDIN, Stanford Univ, Solexperts,
(Halliburton, CO2CRC, LBNL)
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C@z Modeling of dipole experiment

ﬂ Brine, CO2
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Effect of dipole distance

acCO2 saturation at time = §2.33 days
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O Injection-abstraction dipole produces a directed movement

O Larger dipole distance (100 m) stretches the scCO2 plume more, and the CO2
arrives later to the abstraction well

O Early arrival means that a large portion of CO2 will be lost, if abstraction (to d
the tracers) continues

N
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Injection/abstraction schemes

scCO2 saturation at time = 62.33 days
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increases dissolution and leads to removal of a large part of the molmle 'scCO2
O Continuous abstraction significantly increases the CO2 migration updip towards
the abstraction well, while dissolution is not markedly increased
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Effect of layering

scCO2 saturation at time = 32.33 days
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a A layer with higher permeability will dominate the CO2 migration
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m Effect of heterogeneity in sandstone

Vertical variogram for log(k)
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C@z Push-Pull CO2 injection experiment

* test aims at determining residual phase
trapping by a specific test sequence using
a test sequence, an approach similar by
Zhang et al. (2011).

3 injection-withdrawal of
scCO2 and brine

\ J

Y
zone of residual trapped scCO,

experimental design for studying residual trapping of supercritical carbon dioxide. International Journal of

Reference: Zhang Y., Freifeld B., Finsterle S., Leahy M., Ennis-King J., Paterson L., Dance T, 2011, Single-well '
Greenhouse Gas Control, 5, 88-98. Z



"‘* Simulation of push-pull experiment
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REFERENCE TESTING

« Simulations with different assumed

residual COZ2 saturations, heater effects and
amount of injected CO, has been carried out
using TOUGHZ2/ECO2N, to see the effect on
temperature and pressure response. 7 ,




eriment

C@, Simulation of push-pull exp
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Effect of residual saturation on observed

temperature and pressure
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C@z Modelling of combined well-reservoir CO, flow

e Estimate conditions needed at the well-head to ensure at
least the desired injection flow rate into the formation

e impact of different formation conditions

P1,T1,Q
Analytical solution MLhOd
for the CO2 flow in = Analytical solution for one-
& the well . . . .
_ dimensional CO2 flow in the pipe,
Numerical . ]
solution for the CO2 flow in solving  equations of mass,
the porous medium momentum and energy
(TOUGH2/ECO2N) .
< conservation
P1, T1=F (P2, T2, Q)
= Numerical solution for CO2 flow
" e in the reservoir
P2, T2, Q P2, T2 =F (Q, k, other formation
lllustration of the project p ro p e rt | es )

M. Kitron-Belinkov, K. Rasmusson, M. Rasmusson, F. Fagerlund, A. Niemi, ]J. Bensabat and J. Bear
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CQ;

Modelling well-reservoir CO, flow

Example: maximum pressure in the injection element (well bottom) during
injection for different outer boundary conditions of the reservoir

(multilayered model)

7

. Best estimate volume

= . xi0 Open boundary = x10
m 28 T T T m 26
:‘ ';' —+— G=1tonh
5 . = 24 —&— Q=3tansth | ]
. —— =5tonsth
%] i
w 2l B 22 —+— Q=Ttons/h
g 2
A a2
£ 15 £ 18
= =
e § 16 § 16 *\\T
o "
S 14 : : : : S 14 : : : :
= 0 100 200 300 400 500 = 0 100 200 300 400 500
Permeability [mD] Permeability [mD]
5 .7 500mradiusclosed boundary o+ - 250 mradius closed boundary
F14m) n‘ 258 nq 28
HiN ol Tl
te 8 2
l;;‘“}ﬁm : 24 : 2B
|-nz % %
. | o 22 L 24
g & =
= A
g 2 g 22
= =
g 18 g -
- p—y -y
= x >
S 5 L : : : S s : : : :
= 0 100 200 300 400 0 = 0 100 200 300 400 500
Permeability [mD] Permeability [mD]

SEVENTH FRAMEWORK
PROGRAMME



C@z Flowing FEC method for determining conductivit
Flowing FEC Method

Flowing FEC (Fluid Electrical Conductivity) is fast way (as low as 12 h of
experiments) to get detailed permeability structure and internal heterogenity
of a target layer.

0.5h ------ 6h . 2 &
QO‘(QO Q SESENEE | gs——— oh = S T
t ~—== 3h -———12hT 2T
~—_ ‘\\%C;g e 2000 - &___________._D__’T'_I_—;I‘J
I \\/”-_\_f
93G5 —~ 1500 B
- d--?-2 /”/’,/ i e —‘//\\ /\FJF‘
O 1000 ¢ P4 \
<91 G T / // \
/ \___-f\
500 - £ ¥ I
Initial Replacing FEC Logging A(FEC) > e P g
Borehole Water (several times) while 0 o . . —1a
Pumping at Q
Hpng 1590 1600 1610 1620 1630 1640
Area under each peak = q,C; x At Depth (m)
Skewness of peak upwards — q;
Reproducing the two features — q; and C; FEC profile obtained from Salinity logging
then g, — T, method (for well H18)

Sharma P., A. Niemi, C.F. Tsang, J. Bensabat, P. Pezard and F. Fagerlund: Flowing Fluid Electric
Conductivity Logging Method for Characterizing the Hydraulic Conductivity Structure of a Target Layer
for CO, Injection. EGU 2011.
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Use of Tracers

See posters session

« Ghergut et al 'Single-well and interwell tracer
test design for CCS pilot site assessment’

* Ghergut et al ‘Dual tracer push-pull test for
quantifying residual CO2 interface area and
saturation’

In the following a few words about KIS tracers
under development
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Applying reactive Esters as KIS-Tracer
(kinetic interfacial sensitive tracer)

Tracer reaction at interface:

Acop ¥+ HO— B + C

Reactive Water Product 1 Product 2
Ester (KIS) (Brine) (Acid) (Alcohol)
AscCOZ BHZO + CH2O
monitoring injection monitoring injection
well well well well

o Interface-sensitive
|| . Time-dependent
Do . Kinetic coefficients

Spreading CO,
front and changing interface

+++++++++++++

Beginning of injection

In contrast to Partitioning-Tracers which are:
volume-sensitive & based on equilibrium reaction (= transient studies |
ditricult)
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KIS-Tracer design

Design and synthesis of new chemical
compounds (esters) that meet the ®
following requirements:

- occupation at interface of Langmuir isotherm type ®
— constant amount of A

- partitioning of A,B and C between phases must be negligible
— KIS Tracer: scCO, soluble, non-polar, high logkow value
— reaction products: ionic, highly water soluble

- k_diff >> k_reac (diffusion rate to interface is faster than reaction rate)
— reaction rate controlled by temperature and molecule type
— reaction rate is limiting step

KIS Tracer will allow to study:

- Influence of pressure stimulation on mixing (meso scale lab)
- significance of fingering effects at field scale
- residual saturation of CO,
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Modeling of KIS-tracers

er ( &S \ep, { . 1 _&s |
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-

The gas equation is written as
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The heat transport equation is defined as

]E‘ET

kfk
[a-mp.c, 418,00 +n0-5,)p.c, =~V 1o, T~ Tp: 2,0

.i

_? [plf Tk

~(Vo, + o @)1=V -k VI)-Or =0

The distribution of gas pressure The distribution of CO2 saturation

The distribution of water pressure

UPPSALA
UNIVERSITET

The concentration of tracer in CO2

Fagerlund, Tong et <, v ..
[N 5V RAMEWORK



@) Where are we now

- Intensive planning work completed,
including monitoring system design,
modeling, permit applications

* Field activities underway since
Nov 2010

- Opening of the Well H18 (Nov to
Feb 2011) was not succesful

- Re-evaluation of data March-April
- Opening of H35 now essentially i
complete

— ] ]
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C@z Mustang Partners and SIRAB
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Thank you!
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