SÉQUESTRATION GÉOLOGIQUE DU CO₂ CHAIRE DE RECHERCHE

Basin-scale assessment for CO₂ storage prospectivity in the Province of Québec, Canada

 $= \ln (0) = \ln$

Michel Malo and Karine Bédard

6th Trondheim CCS Conference, Norway June 15, 2011

Centre - Eau Terre Environnement

The Province of Québec in Canada

Paleozoic sedimentary basins in Québec

Modified from Castonguay et al. 2004

St. Lawrence platform basin St. Lawrence Lowlands sub-basin (Cambrian to Upper Ordovician)

- Complete plateform sequence
- From the base to the top:
 - Basal sandstone, dolomite, carbonate, shale and turbidite of the foreland basin
- Limited faulting
 - Synsedimentary normal faults re-activated as high-angle reverse faults

St. Lawrence platform basin Anticosti sub-basin (Lower Ordovician to Lower Silurian)

- Carbonate platform
- Limited faulting
 - syn-sedimentary normal faults

Modified from Castonguay et al. 2005

Taconian basin (Cambrian to Upper Ordovician)

- Cambrian-Ordovician rocks of the Laurentian passive margin and Ordovician rocks of the lapetus oceanic domain
- Highly faulted and folded during the Mid-Ordovician Taconian orogeny and superimposed Mid–Devonian Acadian orogeny

Acadian basin (Upper Ordovician to Lower Devonian

- Successor basin after the Taconian orogeny
- Moderate to extensive faulting and folding during the Mid-Devonian Acadian orogeny

Maritimes basin (Upper Devonian to Permian)

- Successor basin after the Taconian and Acadian orogenies
- Salt domes and coal meaures
- Limited extensional and strike-slip faulting

Methodology for screening and ranking of sedimentary basins

adapted from Bachu (2003) and Kaldi and Gibson-Poole (2008)

- 15 criteria
 - 10 geological
 - 5 pratical
- Some criteria are not assessed hydrogeology, pressure regime
- Allow objective comparison between basins

	Classes					
	1	2	3	4	5	
Seismicity (tectonic setting)	Very high (e.g.: subduction zones)	High (e.g.: syn-rift)	Intermediate (e.g.: foreland)	Low (e.g.: marge passive)	Very low (e.g.: craton)	
Size	Very small (<1,000 km²)	Small (1,000-5,000 km²)	Medium (5,000-25,000 km ²)	Large (25,000-50,000 km ²)	Very large (>50,000 km ²)	
Depth	Very shallow (<300 m)	Shallow (300-800 m)	Deep (>3,500 m)	Intermediate (800-3,500 m)		
Deformation (faults & fractures)	Extensive	Moderate	Limited			
Reservoir- seal pairs	Poor	Intermediate	Excellent			
Geothermal	Warm basin (>40°C/km)	Moderate (30-40°C/km)	Cold basin (<30°C/km)			
Hydrocarbon potential	None	Small	Medium	Large	Giant	
Evaporites	None	Domes	Beds			
Coal	None	Very shallow (<300m)	Deep (>800m)	Shallow (300-800m)		
Maturity	Unexplored	Exploration	Developing	Mature	Super mature	

	Classes						
	1	2	3	4	5		
On/Off shore	Deep offshore	Shallow offshore	Onshore				
Climate	Arctic	Sub-arctic	Desert	Tropical	Temperate		
Accessibility	Inaccessible	Difficult	Acceptable	Easy			
Infrastructure	None	Minor	Moderate	Extensive			
Major CO₂ sources	None	Few	Moderate	Significant	Many		

15

 $w_i = 1$

Numerical values for each criteria and classes and weights assigned to the criteria

							*
		<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5	Weight <i>W</i> _i
<i>i</i> = 1	Seismicity (tectonic setting)	1	3	7	15	15	0.10
<i>i</i> = 2	Size	1	3	5	8	10	0.06
<i>i</i> = 3	Depth	1	2	6	10		0.10
<i>i</i> = 4	Deformation (faults & fractures)	1	4	10			0.09
<i>i</i> = 5	Reservoir- seal pairs	1	4	10			0.10
<i>i</i> = 6	Geothermal	1	4	10			0.08
<i>i</i> = 7	Hydrocarbon potential	1	3	7	14	21	0.04
<i>i</i> = 8	Evaporites	1	2	3			0.01
<i>i</i> = 9	Coal	1	2	5			0.04
<i>i</i> = 10	Maturity	1	2	4	8	10	0.08
<i>i</i> = 11	On/Off shore	1	5	10	15		0.11
<i>i</i> = 12	Climate	1	2	4	7	10	0.04
<i>i</i> = 13	Accessibility	1	3	6	10		0.04
<i>i</i> = 14	Infrastructure	1	3	7	10		0.05
<i>i</i> = 15	Major CO ₂ sources	1	3	7	11	15	0.06

Basin suitability evaluation method

- Each class (j) from each criterion (i) has a score
 - $F_{i,j}$

Normalized score for each criterion

- P_i^k • Class 1 = 0 P_i^k =
- Class n = 1

General score of each basin

• Weighted mean of the normalized scores and weights

$$P_i^k = \frac{F_{i,j} - F_{i,1}}{F_{i,n} - F_{i,1}}$$

$$R^k = \sum_{1}^{15} w_i P_i^k$$

Geological criteria

Seismicity

- Seismicity
- Size

- Seismicity
- Size
- Saulting
- Reservoir-seal pairs

- Seismicity
- Size
- Faulting
- Reservoir-seal pairs
- Output
 Depth

Geological criteria

- Seismicity
- Size
- Faulting
- Reservoir-seal pairs
- Oepth

Geothermal

- ~20°C/km in SLL
- < 30°C/km in southern Quebec

- Seismicity
- Size
- Faulting
- Reservoir-seal pairs
- Oepth
- Geothermal
- Hydrocarbon potential

- Seismicity
- Size
- Faulting
- Reservoir-seal pairs
- Oepth
- Geothermal
- Hydrocarbon potential
- Second Evaporites
- Solution

- Seismicity
- Size
- Faulting
- Reservoir-seal pairs
- Oepth
- Geothermal
- Hydrocarbon potential
- Second Evaporites
- Soal
- Maturity

Practical criteria

On / Off shore

- On / Off shore
- Climate
 - Temperate

- On / Off shore
- Climate
- Accessibility
- Infrastructures

- On / Off shore
- Climat
- Accessibility
- Infrastructures
- CO₂ sources

Sources : Environnement Canada (2010) GHG Emissions by industry (2009).

Basin assessment for the Province of Québec - Results

INRS

iversité d'avant-garde

		St. Lawrence Platform					
		St. Lawrence Lowlands	Anticosti	Taconian	Acadian	Maritimes	
iteria	Tectonic setting	4	4	4	4	4	
	Size	3	5	5	4	4	
	Depth	5	5	N/D	5	5	
	Deformation (faults & fractures)	5	5	1	1	5	
al cr	Reservoir-seal pair	5	5	1	1	5	
Geologica	Geothermal	5	5	5	5	5	
	Hydrocarbon potential	3	3	1	2	4	
	Evaporites	1	1	1	1	3	
	Coal	1	1	1	1	2	
	Maturity	3	2	2	2	2	
<u>a</u>	On/Off shore	5	4	5	5	3	
criter	Climate	5	5	5	5	5	
Practical c	Accessibility	5	2	5	5	2	
	Infrastructure	5	2	5	5	2	
	CO ₂ sources	5	2	3	1	2	
	Score - <i>R^k</i>	0.84	0.69	0.51	0.58	0.67	
Ranking		1	2	5	4	3	

Ranking of Québec sedimentary basins

Conclusions

- The St. Lawrence platform basin is the most prospective basin for CO₂ storage particularly the St. Lawrence Lowlands sub-basin
- The Maritimes basin must be considered even if it is largely an offshore basin
- Sites were selected and characterization is ongoing at the Bécancour site

SÉQUESTRATION GÉOLOGIQUE DU CO₂ CHAIRE DE RECHERCHE

 $= \ln (0) = \ln (0)$

INRS

Acknowledgments

-10nmol

Centre - Eau Terre Environnement