

Evaluation of the CO₂ leakage risk along the abandoned wells in the French context

S. Sy, A. Fabbri, I. Gravaud, N. Jacquemet, D. Seyedi

-1.89 3740 46 -625.5

BRGM/RNSC

Objectives of the study

Establish a classification adapted to the French context

- Criteria to be retained
- Are data available for verification?
- Risk levels derivation and mapping
- Incorporation of environmental criteria from a case study:
 - Reservoir fluid chemistry
 - Mechanical behaviour of rocks surrounding abandoned well
 - In situ stress, pressure and temperature

Part I : Adaptation of Watson and Bachu (2007) classification to the French context

Retained criteria for the classification

> Wellbore type (cased or uncased):

 \rightarrow A well is considered as "cased" if it has a cased interval intercepting the reservoir where CO₂ may be stored (here, the Dogger or Keuper reservoirs in the Paris Basin)

Date of abandonment:

→ To be compared to year 2000, which corresponds to a significant improvement in the French wellbore abandonment regulation

Cemented up to the surface (or not)

> Deviated well (or not):

→ A wellbore is deviated if its total depth (TD) exceeds its total vertical depth (TVD)

Spud date:

 \rightarrow To be compared to year 1980

Data source

> We essentially used the database "Forages profonds"

- Carried out under an agreement between BRGM and the French water agency (Vernoux *et al.*, (2003))
- A total of 3482 wells, among them 3144 were analysed to perform this study

> Available information in the main table:

- Well identification code
- Dates (end of drilling, abandonment, ...)
- Well type
- State (operating or abandoned)
- Depth
- Cementing and casing
- Plugging (for abandoned wells)
- ...and other tables that complete wells description

Verification of availability of data relative to the considered criteria

- Only the Dogger aquifer is considered
- But the database allows to access only to geologic strata that have been crossed by the wells
- → So we make the following assumptions :
 - The Dogger aquifer is present anywhere in the Middle Jurassic
 - Depth of its roof between 800 and 1600 m

\rightarrow 216 wells are concerned

> Results from verification:

	Retained criteria for the classification				
	Wellbore Type	Abandonm- ent Date	Cementing	Deviation	Spud date
Avalaibility in the database	85.6%	57.87%	100%	100% or 23%	100%

Availability of data in the 216 abandoned wells likely to intercept the Dogger aquifer

Shallow leakage risk calculation

Shallow leakage factors (Watson & Bachu 2008)

Lack of information for 2 criteria

→4 values for each well : min-min, min-max, max-min and max-max

- Min: the minimum value is attributed to the criteria when information is lacking
- Max: : the maximum value is attributed to the criteria when information is lacking

Criterion	Value	
Cased well	8	
Uncased well	1	
Lack of information	8 or 1	
Abandoned before 2000	5	
Abandoned after 2000	1	
Lack of information	5 or 1	Shallow leakage factors
No cement to surface	5	
Cementing intervals unknown	4	
Other cases	1	
Deviated well	1.5	
Non deviated well	1	
Spud date before 1980	3	
Spud date after 1980	1	uryiii

Risk levels

Using the values of table 2, a tree risk of 32 branches has been determined. The tree risk shows four risk levels:

- Elevated risk: the CO₂ surface leakage risk of the well is greater than or equal to 200 and less than or equal to 900
- Mean risk: the CO₂ surface leakage risk of the well is greater than or equal to 40 and less than or equal to 180
- Low risk: the CO₂ surface leakage risk of the well is greater than or equal to 24 and less than or equal to 37.5
- Very low risk: CO₂ surface leakage risk of the well must be greater than or equal to 1 and less than or equal to 22.5.

The tree risk used to derive the risk levels

Comparison of risk levels distributions

Mapping

The resulting maps emphasizing that the classification is strongly influenced by the way that the lack of information is managed

Géosciences pour une Terre durable

Conclusions about the classification

- The input data necessary to establish the classification are mostly available
- The management of the lack of data is of primary importance in this kind of study
- The methodology used here does not take into account any changes in the integrity of the well in the long run.
- \rightarrow This is the goal of the next step of this study

Part II: Towards mechanical and environmental criteria

Objectives

The objective is to assess the failure risk of the cement plug of an abandoned well after injecting CO₂:

- For different CO₂ injection scenarios (**injection rate**)
- Different distances between injection well and the abandoned well (d)
- In a compressive stress regime or an extensive one (**K**)
- For different type of the rock surrounding the abandoned well

For now only the mechanical aspects are investigated

Method

> The calculation is in two parts:

- 1. Large-scale hydro-mechanical simulation of the CO₂ injection using the "Superviseur"
 - In a 150 km radius axisymmetric model
 - For each stress regime and each injection rate
 - Variation of the effective stresses induced by the injection was extracted at different distances (from injection point) where the abandoned well could be located
- 2. 3D simulation of the well cement plug and its immediate environment by superimposing:
 - The loading history of the abandoned well
 - And the variation of effective stresses induced by the injection of CO₂

The "Superviseur"

Provides a coupling between Code_Aster and TOUGH2/ECO2N (for its ability to take into account the supercritical property of the injected CO₂)

- Pre-processing, launching, synchronisation of the two codes
- Communication between the two codes
- Storage of the data for post-processing

Parallel algorithm. At time n, TOUGH2 calculates the total pressure for the time n + 1 while Code_Aster is calculating the change in porosity that allows to update the permeability for time n + 1 (Sochala et al., 2010)

3D simulation of the well cement plug

- To illustrate the proposed methodology, the results from Mainguy et al. 2007 are used to reproduce the well state during production and abandonment. We summarize this study as follows:
 - A large scale reservoir simulation is carried out to simulate production and abandonment
 - \rightarrow P and T are then calculated
 - These P and T are used to derive effective stresses in a geomechanical model, in two cases:
 - Maximum compressive load
 - Maximum tensile load
 - \rightarrow The loading history of the abandoned well is then derived
 - Finally a wellbore mechanical model is carried out using effective stresses extracted from the cell where the wellbore is located

Wellbore mechanical model

- Rock zone of 10m x 10m x 1m around the wellbore of 10cm radius.
- Stresses are applied to the boundaries of the model and in its upper face (not seen on the figure below)
 - Loads history from the large scale geomechanical model of Mainguy et al. 2007, in the case of maximum tensile load
 - And loads representing effective stresses changes due to CO₂ injection (Rohmer & Seyedi, 2010 for material properties)
- Zero displacements in the inner edge of the model due to symmetry and in the lower edge

Results for 1 scenario Stress path in the cement plug located at 5 km from injection point 3.5 ^x 10^b 300 400 v ---without CO, injection .**⊶o**^{400 y} 300 y ----with CO₂ injection : 10 Mt/y from year 50 to year 70 200 y ---yield surface 2.5 (Pa) σ 1.5 0.5 -2.5 -2 -1.5 -0.5 0.5 -1 p (Pa) x 10° The injection of CO₂ may induce the abandoned well cement Géosciences pour une Terre durable plug failure at approximately 150 years for the studied conditions

Work in progress

- Realization of the different scenarios
- Determining the parameters that influence the most the failure risk of the cement plug
- Proposing new environmental criteria related to:
 - Stress regime
 - Mechanical properties of rock surrounding the abandoned well
 - CO₂ injection scenario (injection rate and distance of the injector well to the abandoned well)

Conclusion

- We have shown here a methodology for a mechanical study of an abandoned well
- The objectives are to draw general conclusions as the classification does
- And provide a complement to the classification for decision making
- The impact of the following parameters will be investigated
 - Injection rate
 - Stress regime
 - Mechanical properties of rock surrounding the wellbore
 - Distance from the injector well

