Modelling blow-out from a CO₂ well

Erik Lindeberg SINTEF Petroleum Research

Trondheim CCS-6 14. - 16. June 2011

SINTEF Petroleum Research

Objective

- To model multi-phase CO₂ flow in a blow-out situation taking into account
 - Phase changes occur along the well
 - Heat is exchanged between the rock and the flowing CO₂
 - Accurate modelling of the strong adiabatic cooling due to expansion (while reservoir condition has been simplified)
 - Suggest possible experiments that could verify modelling

Application on the **Sleipner CO₂** injection well 15/9-A16

32

31

30

CO₂ temperature, °C 85 65 65 65

26

25

24

Basic equations

Heat flow:

$$Q = KF\tau, \quad F = F(D, t, r)$$

Combining heat flow and the adiabatic contribution

$$\frac{d\tau}{dz} = s - \frac{KF\tau}{\left(\frac{dm}{dt}\right)c_p} = s - b\tau, \text{ where } b = \frac{KF}{\left(\frac{dm}{dt}\right)c_p} \text{ and } s = \frac{\left(\sigma - \frac{dT_{ad}}{dz}\right)}{b \, dl}$$

Integrating along direction of flow:

$$\tau = (\tau_0 - s)e^{bdl} + s$$

Boldizar (1958):
$$F \approx 4\pi / \ln\left(\frac{4Dt\gamma}{r^2}\right), \quad \gamma = 0.5772..$$
 (Eulers const.)

Solution method

- Numerical solution by discretizing the well into length steps (typically < 1000). At each step the flow equation is solved analytically
- A rate is applied at the perforation and the corresponding pressure is calculated at the well head
- Phase regimes has to be located to avoid a single step to cross the phase boundary.
- The rate is iteratively altered until the desired blow-out pressure is reached (typically 1 atmosphere)

Well features

Perforation depth: 1092 m (from well head) Length: 3100 m Radius: 0.1 m Adiabatic section: 160 m (platform leg) Reservoir conditions: 106 bar, 37 °C

Perforation depth: 1092 m (from well head) Length: 1092 m Radius: 0.1 m Adiabatic section: 160 m (platform leg) Reservoir conditions: 106 bar, 37 °C

Well features Vertical well

Temperature and pressure profiles

Phase diagram for CO₂ in the p and T space

p-T path along deviated well

Condensed phase fraction in well

CO₂ heat capacity, c_p, and total density of as function of depth

CO₂ densities along the well

() SINTEF

SINTEF Petroleum Research

Solubility of H₂O in CO₂

If CO₂ is saturated at reservoir conditions - free water will be present in the well

Phase diagram for CO₂ in the p and T space

SINTEF

SINTEF Petroleum Research

Summary of some cases

Well	Reservoir conditions		Blow out	Mass rate	Blow out speed	Blow out temp.	Depth sublimation	Depth gas+liquid	Depth hydrate
	bars	°C		kg/s	m/s	°C	m	m	m
Vertical	106	37	Well head	244	1165	-81.2	4.7	671	356
Deviated	106	37	Well head	181	935	-79.3	5.8	848	544
Vertical	106	37	Sea floor ¹⁾	284	183	-45.8		704	428
Deviated	106	37	Sea floor ¹⁾	195	150	-47.5		874	620
Vertical	130	37	Well head	313	1586	-97.1	3.7	465	252
Deviated	130	37	Well head	225	1374	-96.1	26.2	698	440
Johansen	220	100	Well head	268	1232	-74.8	2.2	389	205

¹⁾ Sea depth 82 m giving a blow out pressure of ~ 8.2 bars

p-T path along deviated well "Johansen"

Temperature, °C

Conclusions

- The injection well approaches adiabatic conditions relatively fast, *i.e.* the transient heat effect can then be neglected
- Stored CO₂ will be water saturated (0.01 0.02 mole fraction H₂O) and solubility will decrease up along the well.
- At clogging due to hydrates (or unlikely dry ice) heat transfer from the rock will melt the plugs and cause the release pulse step release.
- The recent fast CO₂ release tests in Germany from a pipe
 - 10 000 tonne per 10 hours = 278 kg/s are in the range of typical blow-out rate from wells
 - This test lack the gravity effect
 - Are approximately adiabatic
 - This suggest similar tests to be performed on an abounded well

