Feasibility of monitoring techniques for substances mobilised by CO₂ storage in geological formations – IEA GHG Project

Linda Stalker Senior Geochemist

Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Presenting to TCCS-6, Trondheim, 14-16th June, 2011

© CO2CRC All rights reserved

Acknowledgements

- Internal reviewers at CSIRO and CO2CRC
- IEA GHG for funding

Karsten Michael

Ryan Noble

Allison Hortle

Bobby Pejcic

Matthew Leybourne

Outline

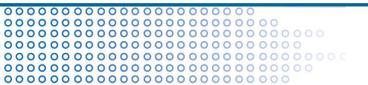
Objectives

- Key points of the project
- Looking at gaps
 - Selected results
 - Biosensing
 - Mobilising organics
 - Monitoring contaminants
- Conclusions
- Future work

U-tube sampling facility at Otway.

000 00 0000000000 000 C 0 000 O O 000

Key points being covered in the project


- Feasibility of Monitoring Techniques for Substances Mobilised by CO₂ Storage in Geological Formations
 - Flow effects
 - Mixing of waters/changes in chemistry (via P/T)/pressure perturbations
 - Geochemical effects
 - Dissolution/diagenesis/chemical alterations (all formation types)/mobilisation of heavy metals
 - Shallow/surface effects
 - Toxicity on biosphere/microbial effects/scaling
 - Capture gas compositions
 - Power plants/LNG/industrial sources
- Built on previous work "Downhole monitoring of chemical changes associated with CO₂ Storage" Ross et al, 2007, CO2CRC RPT07-0749

Search Criteria

Analytes	Levels
CO ₂	ppb to percent
рН	relative change
Hydrocarbons	ppb to percent
Anions	mMol
Cations	mMol
Tracers	ppb to ppm
Pressure/temp	kPa / °C
Geophysical properties	varies with methods employed
Biological changes	varies with methods employed
Contaminants	varies with contaminant

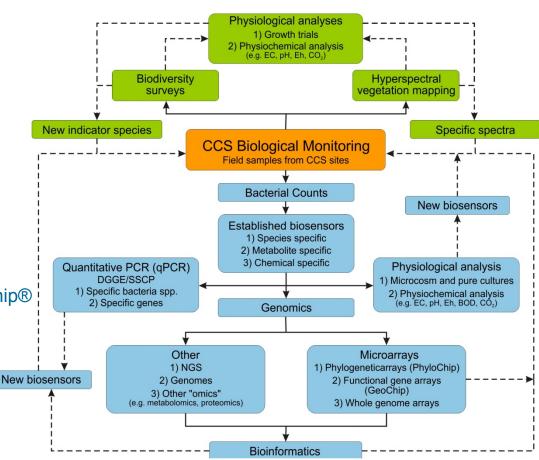
Considerations	Approx. Ranges
Depth	soil surface to km
Temperature	4°C to ~150°C
Aqueous environ.	yes
Power	240 V max.
Data transmission	wire or wireless
Lifetime	short to long-term
Self-calibration	drift
Redundant/robust	environ challenges
Relative cost	indicative costs

Methods Used

- **Literature Search** lacksquare
 - ISI Web of Science
 - ISI Derwent Innovations Index
 - Google
 - others

000

000


- **Case Study Reviews**
 - Pembina, Canada
 - Ketzin, Germany _
 - Cranfield, USA
 - Frio, USA
 - Otway, Australia

Biological technology for monitoring CO₂

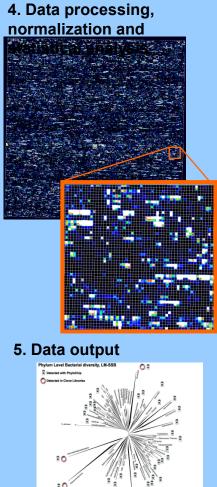
- The challenges
 - Identifying new tools
 - Understanding and characterising the changes in these domains caused by CO₂ increase or displacement of O₂
- The tools
 - Ecosystem Botanical Monitoring
 - Microbiological monitoring
 - Bacterial counts
 - Microbiological/metabolic activity
 - Selected enzyme/shift sensors
 - PCR/DNA fingerprinting
 - Microarrays PhyloChip® & GeoChip®
 - Next Generation DNA (NGS)
 - Ecogenomics

Adapted from Maphosa et al., 2010

PhyloChip® - Workflow & Output

2. Sample preparation a) DNA extraction b) DNA amplification

c) Production of fragment target labelling and array hybrization
d) The labelled DNA fragments and a control mixture are inserted into the Chip 3. Sample analysis


a) The Chips are given a stringent wash under specified conditions in a fluidics station. Non-exact DNA 'matches' are

b) Chips read by laser scanner

Photos courtesy S. Wakelin, 2008

Acidobacteria others TM7-3 Actinobacteria Planctomycetacia Gammaproteobacteria Epsiolonproteobacteria Deltaproteobacteria Cyanobacteria Clostridia Chloroflexi Betaproteobacteria **Bacteroidetes** Alphaproteobacteria Sample 2 TM7-3 others Acidobacteria Planctomycetacia OP Actinobacteria Gammaproteobacteria Epsiolonproteobacteria Deltaproteobacteria Cyanobacteria Clostridia Alphaproteobacteri

Sample 1

From Wakelin et al, in review

Chloroflexi

Bacilli

Biological

Cost:

H= High, M=Moderate, L=Low

For CCS applications:

= suitable,

= less suitable

For method development:

= tested,

= limited testing,

= untested

X= not applicable

= Botanical = Microbiological

	High throughput	Cost	Deep CCS	Shallow CCS	Tested Deep	Tested Shallow	Tested Analogue
Plant species survey	Y	L	Х		Х		
Plant counts	Y	L	Х		Х		
Hyperspectral plant monitoring	Y	L	Х		Х		
Bacterial counts	Y	L					
Plating	Ν	L					
ATP activity	Y	L					
Metabolic profiles	Ν	L					
Biosensors	Y	L					
Phospholipid Fatty Acid	Y	L					
Microcosms	Ν	Н					
PCR	Ν	М					
Microarrays	Y&N	Μ					
Pyrosequencing	Y&N	IVI					
Ecogenomics	Ν	Н					

Hydrocarbons and Organics

- EOR/EGR relevance CO₂ as a solvent
- Increased awareness of BTEX mobilisation
- Many tools out there
 - Piezoelectric
 - Chemiresistors
 - IR
 - Small scale sensors
- Tools are often non-selective
 - More selective tools are less robust (e.g. membranes)
 - Drift and longevity are untested

Hydrocarbon	Transducer	Analytical range	Detection limit	Comments
Various aliphatic and aromatic compounds	Resistance	NA	~100 ppmv (gas)	Relatively cheap and has a temperature control feature. Portable. Very little information available of selectivity
Various aliphatic and aromatic compounds	Surface acoustic wave	NA	ppb	Portable and compact. Low power. Excellent selectivity
Methane	Near infrared	10 ppm - 100 vol%	~ppm	Portable. Fast response time. Highly selective
Methane	Near infrared	NA	~100 ppm	Portable, rugged and fast response time. Highly selective
Various aliphatic hydrocarbons	Potentiometr ic and Resistance	NA	~ppm	Portable, rugged and rapid response. Poor selectivity.
Benzene, toluene, xylene	Resistance	1-10 ppm	0.5 ppm (toluene)	Portable and compact. Low power. Affected by humidity.

Hydrocarbons and Organics

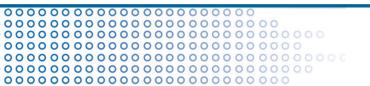
		High throughput	Cost	Suitability at high tempera- ture & pressure	Down-hole monitoring	Groundwater monitoring	Shallow CCS	Deep CCS
	Chemiresistor	Y	L	Y				
	Potentiometer	Y	L	Y				
	Quartz crystal microbalance	Y	Μ					
	Surface acoustic wave	Y	Μ					
4	Mid-infrared		Н					
t requires	Near-infrared		Н					
	Fluorimeter	Y	Н	Y				
	Gas chromatography	Y	Н	Х	Х	Х	Х	Х
	Mass spectrometry	Y	Н	Х	Х	Х	Х	Х

Cost: H= High M=Moderate L=Low

Y = Yes N = No

= has been tested
 = has potential but requires
 further testing
 = untested

X= not applicable


Monitoring Contaminants

- Literature review
- "Effects of Impurities on Geological Storage of Carbon Dioxide*" IEA/CON/09/172 by CanmetENERGY
- Identified quantitatively significant contaminants
- Contaminants as tracers

- Impacts on
 - Injectivity
 - Storage capacity
 - Cap rock integrity
 - Corrosion and fouling
 - Mixing of different effluent streams

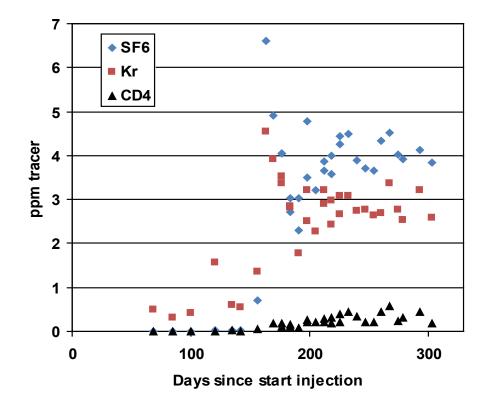
Component	Pre-cor	nbustion	Post-comb	Oxyfuel		
	Selexol	Rectisol	Average ⁽ⁿ⁼³⁾	Comp 1	Comp 2	Comp 3
CO ₂ (vol%)	97.95	99.7	99.89	85.0	98.0	99.94
O ₂ (vol%)			0.02	4.70	0.67	0.01
N ₂ (vol%)	0.9	0.21	0.06	5.80	0.71	0.01
Ar (vol%)	0.03	0.15		4.47	0.59	0.01
H ₂ O (ppm)	600	10	266.67	100	100	100
NO _x (ppm)			20.0	100	100	100
SO ₂ & SO ₃ (ppm)			13.3	50 & 20	50 & 20	50 & 20
CO (ppm)	400	400	13.3	50	50	50

Data from * and IEA GHG

Impact of Contaminants

Contaminant sources

- Coal power plants (IGCC/oxy)
- Oil refineries
- Iron, steel or alumina processing
- LNG/GTL plants
- Coal to urea fertilizers & chemicals
- High levels of impact on "Hub" style CCS Projects
 - Collie SW CO₂ Hub in WA
 - Mixed sources of CO₂ proposed
 - Mixed contaminants = reactants
 - Monitoring at surface & subsurface to understand changes in composition, abundance over time, reactions and other processes.



Collie South West CO₂ Geosequestration Hub

Contaminants as Tracers

- Contaminant quantities are of a similar ratio as many tracers used in CCS research
- Otway Stage 1 results show
 - sulphur hexafluoride in range of <
 1 to 6.6 ppm (atmospheric value 7 ppt)
 - Krypton ranging from < 1 to 4.5 ppm (atmospheric value 1.14 ppm)
 - CD₄ approx 1 ppm (not present in the atmosphere).
- Effects of Impurities on Geological Storage of Carbon Dioxide study
 - Argon in oxyfuel can be > 4% (atmospheric value 0.934%)

U-tube 2 tracer results from Otway Stage 1

Key Points

Bad news

This statement from Ross et al (2007) still applies "few suitable sensing technologies ... are available. ... representing a significant gap in technology ... for large scale implementation of carbon capture and storage"

– Data management and handling will be more problematic

Conclusions

- A range of maturity in different sensors and tools
 - Geophysics is fairly mature incremental changes to technology
 - Biosensing tested in other environments, only now testing in CCS
- The more rugged tools come from the petroleum industry
- Other tools are entering a ruggedization/miniaturisation phase for deployment
- There is scope for developing multi-analyte tools in the future
- Field trials of tools and a database of the conditions and performance is essential
- Data handling will be come a bigger issue due to volume of information
- What we do with the assurance data is most important

CO2CRC Participants

Established & supported under the Australian Government's Cooperative Research Centres Program

