Effects of long-term CO$_2$ storage in coal on the physical and chemical properties of coal

Tshifhiwa Maphala and Nicola Wagner
Contents

- South African context – emissions + reduction strategy
- Atlas on geological storage of carbon dioxide in south Africa - highlights
- Storage in coals: Effects of carbon dioxide storage in coal on the coal structure and properties
“Dark continent”
South Africa’s energy mix - Coal is still King

- Approximately 90% of primary energy is derived from fossil fuels [coal, oil and gas] - (Cloete, 2010)
- Coal contributes about 65.9% total energy supply - (Cloete, 2010)
- 500(Mt/a) CO₂ emissions
- Ranked 13th in the world-total GHG emissions
- A higher emissions intensity (emissions/GDP) than China, India and Brazil
Two Scenarios:
Growth without Constraints and Required by Science

Gap: difference between where emissions might go (GWC – RBS, emissions in 2050) and where they need to go.

Gap is 1300 Mt CO2-eq in 2050. More than three times 2003 annual emissions.
South Africa’s GHG emission reductions strategy – peak, plateau and decline

[Graph showing emissions trend and constraints]

Mt CO₂-equiv

- 1800
- 1600
- 1400
- 1200
- 1000
- 800
- 600
- 400
- 200
- 0

Growth without Constraints
Required by Science

a
b

Copyright ©, All Rights Reserved, University of the Witwatersrand, 16 June 2011
SA’s GHG emission reduction strategy

- Carbon Capture and Storage (CCS) is key to SA’s greenhouse gases reduction strategy.

- Provides a bridge between current trend and future carbon-free renewables future.
Storage ready emissions

- 2010 total stationary point emissions 500(Mt/a)
- About 8% of direct emissions are sequestration ready
 - *Does not necessarily require capturing*

<table>
<thead>
<tr>
<th>Type of emissions</th>
<th>CO₂ emitted(Mt/a)</th>
<th>CO₂ concentration(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequestration ready</td>
<td>35</td>
<td>90-98</td>
</tr>
<tr>
<td>Requires capturing</td>
<td>465</td>
<td>10 – 15</td>
</tr>
</tbody>
</table>
CCS roadmap for South Africa

- CCS Potential 2004 - Completed
- Carbon Atlas 2010 - completed
- Test injection 2016 - 10s thousands tonnes
- Demo plant 2020 - 100s thousands tonnes
- Commercial 2025 - millions tonnes
Contents

- South Africa's Greenhouse gases emissions and mitigation strategies
- Atlas on geological storage of carbon dioxide in South Africa - highlights
- Storage in coals: Effects of carbon dioxide storage in coal on the coal structure and properties
SA potential storage capacity

ATLAS

on

geological storage of carbon dioxide in South Africa
South Africa Storage Capacity

Source: South Africa Carbon Storage Atlas, 2010

<table>
<thead>
<tr>
<th>Geological Formation</th>
<th>Basin</th>
<th>Storage Capacity (GtCO₂)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>Outeniqua basin</td>
<td>48</td>
<td>Offshore</td>
</tr>
<tr>
<td>Saline</td>
<td>Orange basin</td>
<td>56</td>
<td>Offshore</td>
</tr>
<tr>
<td>Saline</td>
<td>Durban/Zululand</td>
<td>42</td>
<td>Offshore</td>
</tr>
<tr>
<td>Saline</td>
<td>Zululand</td>
<td>0.46</td>
<td>Onshore</td>
</tr>
<tr>
<td>Saline</td>
<td>Algoa</td>
<td>0.40</td>
<td>Onshore</td>
</tr>
<tr>
<td>Coalfield</td>
<td>Different</td>
<td>1.2</td>
<td>Onshore</td>
</tr>
</tbody>
</table>
SA’s coal seam storage capacity

Good source-sink match
Summary

- South Africa is one the world’s major global emitters of CO₂
- CCS to play an important role in emissions reduction
- CTL plants produce a highly concentrated CO₂ stream
- Onshore storage is very important
- Onshore storage capacity-coalfields have the highest capacity
Contents

- South Africa's Greenhouse gases emissions and Mitigation strategies
- Atlas on geological storage of carbon dioxide in South Africa - highlights
- Storage in coals: Effects of carbon dioxide storage in coal on the coal structure and properties
Carbon Dioxide storage in coal seams (1)

Diagram showing carbon dioxide storage in coal seams.
CO$_2$ storage in coal seams (2)

- Few concerns with CO$_2$ storage in coal seams:
 - Stability of the sequestrated CO$_2$
 - Sterilisation of the coal seams
 - Swelling of coal on CO$_2$ injection
 - Definition on “unminable”

- Lack of understanding of CO$_2$-coal interactions

- CO$_2$-coal interactions are very complex and are not easily predictable or modeled

- Understanding CO$_2$-coal interactions important for long term CO$_2$ migration simulations in coal seams (monitoring?)
Storage mechanisms and coal structure and properties

<table>
<thead>
<tr>
<th>Adsorption</th>
<th>Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Weak interactions (van der Waals and/or dispersion forces) with sorbent surface molecules</td>
<td>- Very strong interactions with sorbent (chemical reactions?)</td>
</tr>
<tr>
<td>- Reversible desorption</td>
<td>- Irreversible desorption</td>
</tr>
<tr>
<td>- No coal structural changes</td>
<td>- Induces coal structural changes (plasticization, swelling properties)</td>
</tr>
</tbody>
</table>

- Adsorption
 - Weak interactions (van der Waals and/or dispersion forces) with sorbent surface molecules
 - Reversible desorption
 - No coal structural changes

- Absorption
 - Very strong interactions with sorbent (chemical reactions?)
 - Irreversible desorption
 - Induces coal structural changes (plasticization, swelling properties)
Aim:

To study, fundamentally, the **physical and chemical properties changes** of coal upon **long term** CO₂ storage under **subcritical conditions** and **supercritical conditions**

- Results obtained under subcritical conditions are presented in this presentation (below 72.9bar and 31.1°C)
Sampling and sample preparation

- Waterberg coalfield
 - Vitrinite rich and inertinite rich samples

- Density separated
 - Little or no effect on physical and chemical properties

- Particle size
 - -150μm

- Air dried

- Some samples were demineralised for structural analysis purposes
Methodology

Pre-adsorption coal structure characterisation:
- Petrographic analyses
- BET
- He pycnometry
- FTIR
- XRD
- 13C NMR
- High pressure CO2 adsorption isotherms measurements (sorption behaviour)

Adsorption Experiment:
- Long-term CO2 adsorption (up to 6 months)
 - 15, 30, 45 bar
 - 14 days
 - 42 bar
 - 6 months

Post-adsorption coal structure characterisation:
- Petrographic analyses
- BET
- He pycnometer
- FTIR
- XRD
- High pressure CO2 adsorption isotherms measurements (sorption behaviour)

Field samples study:
- Raw sample analysis
- post-storage sample analysis
- Compare with laboratory results
Results

NON DEMINERALISED
Selected results - Sample properties

<table>
<thead>
<tr>
<th></th>
<th>Coal A</th>
<th>Coal B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitrinite (mmf)</td>
<td>91.8</td>
<td>11.2</td>
</tr>
<tr>
<td>Inertinite (mmf)</td>
<td>4.4</td>
<td>80.2</td>
</tr>
<tr>
<td>Moisture (adb)</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Ash (adb)</td>
<td>4.9</td>
<td>10.4</td>
</tr>
<tr>
<td>Carbon Content (adb)</td>
<td>55.7</td>
<td>63.2</td>
</tr>
</tbody>
</table>
Selected results: Pre-sorption properties

- Coal A - Vitrinite rich
- Coal B - Inertinite rich

- Micropore Volume (cm³ g⁻¹)
- Specific BET Surface (m² g⁻¹)
Low pressure sorption behaviour

AdSORBED VOLUME (cm³ g⁻¹) vs. RELATIVE PRESSURE P/P₀

- Coal A (green line)
- Coal B (red line)
Selected results: XRD-Vitrinite coal(A)
Selected results: XRD-Inertinite coal (B)
Physical changes - Surface area

![Bar chart showing BET (m²/g) for Vitrinite rich and Inertinite rich samples after untreated and CO₂ 42bar 6mon treatments.](chart.png)
Physical structure changes-pore size distribution

- Vitri_untreat_nondemin
- Vitri_nondemin_CO2_42bar_6mon
Physical structure changes-pore size distribution

Pore Width (Å)

dV/dw (cm³/g·Å)

- Inert_untreated_nondemin
- Inertinite_CO2_6mon_42bar_Nondemin
Sorption behaviour– High Pressure Volumetric Adsorption System
High pressure sorption behaviour (Langmuir)

Quantity adsorbed (kgCO₂/tonCoal) vs Relative pressure $P/P₀$.

Inert_untreat_nondemin
Vitri_untreat_nondemin
Sorption behaviour: Vitrinite rich coal (A)

![Graph showing sorption behaviour with quantity adsorbed (kg CO2/ton coal) on the y-axis and relative pressure (P/P₀) on the x-axis. Two lines are plotted: one for Vitri_untreat_nondemin and another for Vitri_CO2_6mons.](image)
Sorption behaviour: Coal B – Inertinite rich

![Graph showing the sorption behaviour of Coal B with Inertinite rich. The x-axis represents the Relative Pressure P/P₀, and the y-axis represents the Quantity adsorbed (kg CO₂/ton Coal). The graph compares two conditions: Inert_untreat_nondemin and Inert_CO2_6mons.](image-url)
Results

DEMINERALISED
Structural changes - XRD

Inert_untreated
Inert-CO2_6 months_42bar
Inert_CO2_14days_45bar
Summary and future work

Summary

Different maceral rich coals show different behaviour on \(\text{CO}_2 \) sorption

Vitrinite rich coals show more pronounced structural changes than inertinit

Future work

Comparisons with field samples

Chemical structural changes

Blank runs-inert atmosphere
Acknowledgements

- Dr Nicola Wagner (Wits University)
- Dr Dirk Prinz (RWTH Aachen University, Germany)
- Gregory Okolo (North West University, Potchefstroom Campus)
- Chemvak (Pretoria) – High Pressure VAS
- JAD systems (Johanneburg) – NI and Labview
- Coal and Carbon Research Group (Wits University)