Modeling CO₂ (and methane) Adsorption and Transport in Micro and Mesopores of Carbon-based Systems

Jennifer Wilcox, Yangyang Liu, Mahnaz Firouzi, and Keith Mosher Energy Resources Engineering, School of Earth Sciences Stanford University

June 15th, 2011 Trondheim Carbon Capture and Storage Conference Trondheim, Norway

Yangyang Liu PhD Candidate

Mahnaz Firouzi Post-doc

Keith Mosher MS, recent graduate

Multi-scale Approach

• Experimental characterization of coal and gas shale (organic-rich) samples

- Pore size distribution, porosity, surface area, surface chemistry

• Molecular modeling to predict adsorption and transport

- force fields \rightarrow calculate energies

- Adsorption Grand Canonical Monte Carlo (GCMC)
- Transport Molecular Dynamics
- Pore Models \rightarrow carbon-slit pores \rightarrow cylindrical pores \rightarrow 3-D pore networks

⁺Image from Kovscek, A.R. et al.

Macro-	Meso-	Micro-	Supermicro-	Ultramicro-	Submicro-
> 50	2-50	<2	0.7-2	<0.7	<0.4

⁺F.Y. Wang, *et. al.*, Chemical Engineering Science 62(2007), pp. 3268-3275; P.L. Walker, Philosophical Transactions of the Royal Society of London A 300(1981), pp. 65-81; [‡]B.D. Zdravkov, *et. al.*, Central European Journal of Chemistry 5(2), (2007), pp. 385-395.

Defining Adsorption

Total Adsorption

Direct results from GCMC Modeling

Excess Adsorption

Direct results from Lab Measurements

• Convert from **Total** to **Excess** Adsorption

Total Adsorbed – Bulk = Excess

Potential Models (L-J and TraPPE)

Methane Density Changes in Pores

Adsorption Isotherm Prediction Based on PSD

⁺Exp data from Ronny Pini, Stanford University (and ETH, Zurich)

Effect of Surface Curvature - Adsorption at 273 K

 TraPPE⁺ force field is 3-charge and captures the CO₂ quadrupole moment more effectively

- Enhanced wall-wall interactions of cylindrical pore → higher loading in smaller pores
- Higher packing efficiency of linear CO₂ in cylindrical pore at low pressure

⁺Potoff, J.J., Siepmann, J.I., AIChE Journal 2000, Vol. 47, No. 7

Effective pore width = 1.2 nm @ 2 bar

Cylindrical pores

Slit pores

Effective pore width = 1.6 nm @ 2 bar

3-D Pore Network Model

- The dimensions of the system modeled are ~ 10 x 10 x 10 nm
- 3-D molecular pore network model based on the *Voronoi* tessellation method
- To generate the molecular pore network model:
 - Create a 3-D simulation box of structural atoms corresponding to porous structure
 - Tessellate the atomic structural box
- The pore space is created by specifying the desired porosity and # polyhedra → total volume fraction = specified porosity
 - pore space consists of interconnected pores of various shapes and sizes

2-D Voronol network structure

Modeling Transport with MD

- The pore network model previously described will be used
- Non-equilibrium molecular dynamics (NEMD) simulations are carried out
- The system (pore network) is exposed to an external driving force (chemical potential or pressure gradient) in a specified direction
- Flux and permeability predictions are carried out

Permeability of Pure Components vs Porosity

- The permeability of CH₄, CO₂ and N₂ will increase with increasing porosity
- When the porosity is higher the pores are more connected assisting molecular transport through the pore network
- CH₄ is the more permeable species in the absence of CO₂
- CO₂ crosses over N₂ at ~ 30% porosity
- In small pores CO₂-surface interactions dominate

Permeability of CH₄, CO₂ and N₂ with **average pore diameter of 1.2 nm [12 Å]** and 5%, 15%, 20%, 25%, 30% and 35% porosities

Permeability of N_2/CO_2 and CH_4/CO_2 Mixtures

Permeability of N₂ / CO₂ (left) and CH₄ / CO₂ (right) mixtures with **average pore diameter of 1.2 nm [12 Å]** and 20%, 25%, 30% and 35% porosities

- With mixtures of N₂, at high CO₂ concentrations, permeability is lower below a 30% porosity
- With mixtures of N₂, 25% CO₂ has the greatest permeability
- In gas mixtures of N₂ and CH₄, CO₂ is always the more permeable species in 1.2 nm pores

Gas Slippage - The Klinkenberg Effect

- Research on gas transport through tight sand, coal-bed methane, and unconventional gas reservoirs are examples of cases where more reliable and well supported modeling results could provide useful
- Knudsen # = mean free path \div pore diameter: $K_n = \frac{\lambda}{d}$
- As $d\uparrow$, $K_n\downarrow \rightarrow$ wall effects are minimized (commonly call this D_m)
- As $d\downarrow$, $K_n\uparrow \rightarrow$ wall effects begin to play a role
- Knudsen diffusion is independent of of pressure

Continuum	K _n < 10 ^{−3}
Gas Slippage	$10^{-3} < K_n < 10^{-1}$
Transition	10 ⁻¹ < K _n < 10
Surface diffusion	K _n > 1

⁺M.C. Bravo, Journal of Applied Physics **102**, 074905, 2007

Demystifying the Klinkenberg Effect

• Transport of equimolar binary mixture of CH_4 and CO_2 has been modeled using NEMD simulations in a slit pore model

• The pore wall is assumed smooth and the interaction between molecules and pore wall was modeled by the Steele and fluid-fluid by the LJ potentials

• Verlet algorithm was used to solve the equations of motion

Length = 15.2 nm [152 Å] Width = micro to mesopore range

Upstream pressure = 3 atm, Downstream pressure = 1 atm, Temperature = 298 K

CH₄/CO₂ Velocity Profiles in Micro and Mesopores

• In small pores the velocity profile is plug flow and becoming parabolic at approximately 4 nm pores for CH_4 and greater than 10 nm pores for CO_2

Summary

• Adsorption (GCMC)

- Micro and mesopores dominate surface area and gas containment in coal and organic-rich gas shales
- Wall densities of pores are fairly independent of pressure, while the core fluid density changes appreciably
- Experimental PSD has been used to compare predicted vs experimental isotherms → models can aid in understanding adsorption mechanisms (surface functional groups?)
- Cylindrical pores have enhanced adsorption capacities, with pores less than 1.2 nm

Transport

- Pure gas-phase permeabilities are different than their gas mixtures
- CO_2 has greatest permeability at 25 mol% in 1.2 nm pores in CO_2/N_2 gas mixtures
- Klinkenberg effect is evident for CH_4 in carbon pores less than ~ 3 nm
- Klinkenberg effect is evident for CO_2 in carbon pores less than ~ 10 nm

Acknowledgements

- Experimental Collaborators at ETH, Zurich Marco Mazzotti and Ronny Pini
- Experimental Collaborators at Stanford
 - Mark Zoback, geophysics and Tony Kovscek, ERE
- Computational Resources
 - Stanford Center for Computational Earth & Environmental Science
- Funding

DOE-NETL and BP PhD Fellowship

Questions ?

Results and Discussion - Bulk CO₂ Density

Supplement

• Thermodynamic Properties of CO₂

Phase Diagram of CO₂ and the State of CO₂ at Various Conditions

Supplement – Temperature & Pressure

- Subsurface Temperature Conditions: Geothermal Gradient ⁺
 - Temperature increases with depth below the ground surface
 - ΔT/Δz ~ 30°C/km

$$T = T_s + \int_0^d \frac{dT}{dz} dz$$

- $T_s = mean annual ground surface temperature (assumed to be around 10°C)$
- − Depth of coalbeds ~ 300m \rightarrow T~300K (Powder River Basin, WY)

What is Molecular Dynamics?

• Over the past decades, Molecular Dynamics (MD) simulations have become an important tool for investigating and predicting various static as well as dynamical properties of materials.

• We call *molecular dynamics* a computer simulation technique where the time evolution of a set of interacting atoms is followed by integrating their equations of motion. For a system with N molecules, this involves solving a set of 3N second order differential equations (Newton's equations of motion):

$$F_{x_i} = m_i \frac{\partial^2 x_i}{\partial t^2}, \quad F_{y_i} = m_i \frac{\partial^2 y_i}{\partial t^2}, \quad F_{z_i} = m_i \frac{\partial^2 z_i}{\partial t^2} \qquad i = 1, 2, ... N$$

• The force on the *i*th particle is related to the potential energy and the fluid interactions are pairwise additive since the potential calculations are computationally costly. $N = \frac{\partial u(r)}{\partial u(r)}$

$$F_{x_i} = -\sum_{j \neq i} \frac{x_{ij}}{r_{ij}} \frac{\partial u(r_{ij})}{\partial r_{ij}} \quad U^{Particle} = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} u(r_{ij})$$

Methodology - GCMC

- Statistical mechanics: the bridge to connect micro- and macroscopic properties
- Grand canonical Monte Carlo (GCMC)
 - Fixed:
 - Chemical potential
 - Pore volume
 - Temperature
 - Adsorbates (e.g., CO₂, N₂, methane):
 - Displace
 - Remove
 - Insert
 - Rotate

. . .

• Swap (different types of particles)

Lennard-Jones Potentials

• In many MD simulations the interaction potential between a pair of particles is represented by the classical Lennard-Jones (LJ) 12-6 potential:

$$u(r_{ij}) = 4\varepsilon \left\{ \left(\frac{\delta}{r_{ij}}\right)^{12} - \left(\frac{\delta}{r_{ij}}\right)^{6} \right\}$$

• Where ε is the energy parameter of the potential (the maximum energy of attraction between a pair of molecules), or the LJ well depth, and δ is the size parameter (or the distance at which the LJ potential passes through zero and the potential sharply rises to repulsive values), also called the collision diameter.

The 12-6 Lennard-Jones potential for particles *i* and *j*. The potential energy is in units of ε and the distance between *i* and *j* is in units of δ . When Uij is positive, the interactions for the pair of particles are repulsive. When Uij is negative, their interactions are attractive.

Figure 3.2: Lennard-Jones Plot of Carbon, Methane, and CO₂

Flux and Permeability Calculations

• The flux for each component is calculated by measuring the net number of particles crossing a given yz plane of area A_{yz} :

$$J_i = \frac{N_i^{LR} - N_i^{RL}}{N_{\rm MD} \Delta t A_{yz}}$$

where N_i^{LR} and N_i^{RL} are the number of the molecules of type *i* moving from the left to the right and vice versa, respectively, Δt is the MD time step (we used $\Delta t * = 5 \times 10^{-3}$ = 0.00685 ps, where t* is the dimensionless time), and $N_{\rm MD}$ is the number of the MD steps over which the average was taken (we used NMD = 50,000); the system is assumed to reach steady state when the fluxes calculated at various *yz* planes are within 5% of the averaged values

• The permeability of species *i* are calculated using:

$$K_{i} = \frac{J_{i}}{\Delta P_{i} / nL} = \frac{nLJ_{i}}{\Delta P_{i}}$$

where $\Delta P_i = x_i \Delta P$ is the partial pressure drop for species *i* along the pore, with x_i is the mole fraction of component *i*, and ΔP the total pressure drop across the pore

M. Firouzi, et. al., Journal of Chemical Physics 119(13) (2003), pp. 6810-6822.

Coal and Gas Shale Properties

• Adsorption and surface diffusion characteristics are affected strongly by micropore (i.e., < 2nm) size distributions

 \bullet Total porosity of coal is a complex function of the coal rank and may vary from 4% to 20%

- high-rank coals, the total porosity could be 4–8%
- Iow to medium-rank coals (e.g., lignite and bituminous), total porosity could be 15-20%

• The total porosity of Barnett shale is 3-10% considering the organic kerogen in the rock (accounts for less than 10% of the rock mass) and contains most of the free porosity

• Pore size distribution and pore connectivity have been generated using pore network modeling (based on a graphitic structure) and will be benchmarked by experiments

F.Y. Wang, Z.H. Zhu, P. Massarotto, V. Rudolph, Chemical Engineering Science, 2007, 62, 3268-3275; S. J. M. Butala, Energy and Fuels, 2000, 14(2), 235-259.