FULL-WAVEFORM INVERSION FOR CO2 QUANTIFICATION – APPLICATION TO REAL DATA AT SLEIPNER

A. Romdhane and C. Ravaut SINTEF Petroleum Research

SINTEF Petroleum Research

Outline

Principle of Full-waveform inversion (FWI)

Full-waveform inversion for CO₂ imaging

Synthetic example at the Sleipner field

- Results using Sleipner real data (2006 and 2008 datasets)
 - Pre-processing
 - Initial velocity model
 - Results

Conclusions

Principle of Full-Waveform Inversion

- Introduced in the 1980s (A. Tarantola, 1984)
- Exploits the complete information in the waveforms of seismograms
- Finds the "best" model that minimises the misfit between the observed and the computed seismic data (amplitude and phase)

Formulation in

- Time Domain (Tarantola, 84)
- Frequency Domain (Pratt et al., 90)
- Laplace domain (Shin , 2008)

Principle of Full-Waveform Inversion Seismic acquisition

Application to the Sleipner field

- CO₂ monitoring at Sleipner
 - CO₂ injection in a saline reservoir at Sleipner (North Sea) since 1996
 - 3D seismic monitoring to follow the CO₂ plume migration
 - CO₂ appears as clear reflectors on post-injection seismic
 - CO₂ accumulations under intra shales layers within the Utsira sand
- Challenges:
 - CO₂ accumulations within extremely thin layers (~10 meters)
 - Low velocity inversions (1300 m/s)
 - Inter-bed and surface multiples
 - Limited range of offsets
- Apply FWI to better characterise thickness and Vp velocity at Sleipner
 - Synthetic test
 - 2006 real dataset
 - 2008 real dataset

Synthetic example on the Sleipner field

Synthetic 2D velocity model from TNO
Model 3.3 km x 1.2 km
CO₂ layers of 10-20 m thick
CO₂ layers with velocities of 1500 m/s
Regular square grid of 3 m

Synthetic example on the Sleipner field

- Ocean Bottom acquisition
- 3.2 km acquisition
- Smoothed initial model

- 10 Hz initial frequency
- 15 frequencies every 5 Hz component
- Maximum frequency of 80 Hz

Conclusions form the synthetic tests

- Well constrained Vp velocity model
- Reconstructed low velocity layers (16 to 20 m thickness)
- Good estimation of the velocity in the CO₂ accumulations down to 0.9 km depth
- Layers with thickness about 9 meters requires sources with a high frequency content
- Application to real data should give interesting results if they are not too noisy

SINTEF Petroleum Research

.

Application to real data

2006 and 2008 datasets

- Extracted a 2D line from both 3D datasets
- Post-swell processed data
- Maximum offset of 1.8 km
- Frequency content of the data is from 6 Hz to 80 Hz
- CO₂ accumulations are visible on the near offset section

Specific pre-processing

- Removed t² gain
- Mute before first-arrivals
- data with offset larger than 420 m

- Time shift to get causal signal
- 3D to 2D conversion
- Multiples still in the data

Same pre-processing for 2006 and 2008 datasets

time (s)

Initial velocity model

- Stacking velocities converted into interval velocities in depth
- Velocity model is 6 km long
- Model defined on a regular 3m squared grid
- Validity checked by finite difference modelling

Full-waveform inversion of the real Sleipner data

Invert for 6 frequencies between 10 and 20 Hz

- Inversion is performed frequency by frequency: from low to high frequencies to reduce the non-linearity of the inverse problem
- 10 iterations per frequency
- Invert for the source wavelet
- Released the smoothing constraints during inversion

Velocity models derived from FWI (2006 dataset)

Extraction of 1D velocity profiles (2006 dataset)

SINTEF Petroleum Research

Velocity models derived from FWI (2008 dataset)

Extraction of 1D velocity profiles (2008 dataset)

Velocity models derived from FWI

SINTEF Petroleum Research

Results of FWI

- Improved image of the velocity in the CO₂ plume
- 2-3 layers with velocities of about 1480 m/s and thickness of about 40-60 m
- Better data explanation (frequency and time)
- Same pre-processing for 2006 and 2008 datasets
- Inversion is converging toward possible solutions in both cases

Conclusions

FWI is a promising method to better characterise thickness and Vp velocity at Sleipner

Synthetic case:

- Capability of the method
- Imaging of thin CO2 layers can be performed using
 - Reasonable initial frequency (10Hz)
 - Good initial model
 - Classic acquisition geometry
- Results on real data (2006 and 2008 datasets):
 - Improved low frequency velocity image within CO₂ plume
 - Consistent models with 2006 and 2008 datasets
 - Velocity changes of CO2 layers

Future work:

- Higher frequency inversion (> 20 Hz)
- Initial velocity model
- Pre-processing of the data
- Effects on the migrated image (using RTM)
- 3D inversion

.

Acknowledgments

- This work forms a part of the BIGCO2 and BIGCCS projects, performed under the strategic Norwegian research program Climit and the Norwegian research program Centres for Environment-friendly Energy Research (FME).
- The authors acknowledge the partners of BIGCO2: Statoil, GE Global Research, Statkraft, Aker Kværner, Shell, TOTAL, ConocoPhillips, ALSTOM, the Research Council of Norway (178004/I30 and 176059/I30) and Gassnova(182070) and the partners of BIGCCS: Aker Solutions, ConocoPhilips, Det Norske Veritas AS, Gassco AS, Hydro Aluminium AS, Shell Technology AS, Statkraft Development AS, Statoil, TOTAL E&P Norge AS, and the Research Council of Norway (193816/S60) for their support
- We also want to thank Statoil for providing the Sleipner data and TNO for providing the synthetic Sleipner model

SINTEF Petroleum Research

SINTEF Petroleum Research

.

SINTEF Petroleum Research

.

SINTEF Petroleum Research

.

Synthetic example on the Sleipner field

True TNO model

Velocity model with 1.8km offset

Velocity model with 3.2 km offset

- Better results with 3.2 km offset
- Model derived with 1.8 km offset is still well constrained
- With less offset range more frequency components need to be inverted

Data fit in the initial velocity model

- First-arrivals for the first offset in phase but not amplitude
- First-arrivals at larger offsets
- Does not explain reflections associated with CO₂ plume
- Model is correct but probably not optimal

Data fit in the time domain

Comparison with migrated image in initial model

Velocity models derived from FWI

2006 dataset

