

Pressure performance of a large-scale saline aquifer during industrial-scale CO₂ injection: the Utsira Sand

Andy Chadwick, J Williams, G Williams & D Noy

TCCS-6 Trondheim June 2011

Pressure response

Key measure of aquifer performance (injectivity and capacity)

Controversial (e.g. Ehlig-Economides & Economides)

Are aquifers closed or open at their boundaries?

Do internal flow barriers create small 'closed-systems' within larger reservoirs?

Utsira Sand

North Sea Basin late post-rift succession Giant aquifer Very high permeability Very high porosity Negligible faulting

Sleipner CO₂ injection operation

Injection started 1996 ~13 Mt CO₂ now injected

Wellhead pressure monitoring

Time-lapse 3D seismic monitoring over plume and adjacent aquifer

Pressure prediction by TOUGH2 axisymmetric flow model

TOUGH2 Pressure simulation for 2006

 $\Delta P > 1$ bar suggests flow (pressure) compartmentalisation

Sleipner wellhead pressures

 ρ (z) = density of the injected CO₂ in the wellbore at depth z

Sleipner 3D time-lapse seismic

3D continuous coverage of plume and adjacent reservoir (20 km²)

Seismic pressure response of a clastic reservoir

Empirical – laboratory relationships:

$$V_p = 5.77 - 6.94\phi - 1.73\sqrt{C} + 0.446 \left(P_e - e^{-16.7P_e}\right)$$

$$V_s = 3.70 - 4.94\phi - 1.57\sqrt{C} + 0.361 \left(P_e - e^{-16.7P_e} \right)$$

[Eberhart – Phillips et al 1989porosity, shale content, effective stress]

For rocks on normal compaction trend *in situ* effective stress is likely reliable indicator of elastic properties

Seismic pressure response (ΔT) of the Utsira Sand

$$\Delta T = t_2 - t_1$$

Measuring ΔT in the Utsira Sand

For noise-free data, travel-time resolution for a single trace ~ 0.5 ms >116500 traces

> 30000 high quality traces

Measured ΔT 1994 to 2006 (T5mM to BUS)

31138 high quality traces

Random trace-to-trace travel-time 'jitter' due to differences in ambient noise and acquisition geometries on successive surveys – subset of the time-lapse 'repeatability noise'

Systematic (DC) time-lapse timeshifts cancelled

Calculated noise-free ΔT 1994 to 2006 (T5mM to BUS)

reservoir thickness

Top reservoir repeatability noise

- how well is a single horizon reproduced on successive surveys?

Measured ΔT at top reservoir (i.e. on a single horizon)

Calculating the reservoir response

time-series convolution

Calculated ΔT 1994 to 2006 from convolution (T5mM to BUS)

ΔT (ms)

Calculated ΔT 1994 to 2006 from convolution (T5mM to BUS)

Conclusions

Observed travel-time changes (Δ T) 2 – 5 km from IP show scatter with normal distributions about very small mean/median values < 1 ms

Seismically-determined pressure change for 1994 to 2006 $\Delta P \ll 5$ bars $\Delta P \ll 1$ bar

Open aquifer or boundary at the aquifer limits

No evidence of internal flow compartmentalisation

Applied geoscience for our changing Earth

Acknowledgements

CO2 REMOVE research monitoring verification

