

EC Project : iCap Innovative CO₂ Capture Project Overview

Innovative CO₂ Capture, 7th FP, Cr. No 241391

TCCS6, Trondheim June 2011

Overview

- Objectives
- Outline of work programme
- Snapshots from the activity
- Consortium
- Announcement

Project Overview

- iCap seeks to remove the barriers for world wide CO₂ capture deployment by developing new technologies with potential for :
 - reducing the current energy penalty to 4-5% points in power plant efficiency by introducing a new breed of solvents based on phase change.
 - to combine SO₂ and CO₂ removal, thereby introducing process intensification, reducing capital cost, and energy requirements
 - make low temperature membranes feasible for post-combustion processes, thereby creating a solvent free alternative
 - develop new power cycles that enable high pressure/high temperature post combustion membrane CO₂ capture

iCap Project Overview

Organization

TCCS6, Trondheim June 2011

WP1 Phase change solvents

R&D area	State of the art	iCap advancements beyond the State of the Art
Novel post Combustion systems based on phase change solvents	Chilled ammonia process under development by Alstom. Carbonate and amino acid salt systems, both systems currently under development in the CESAR project. Hydrate formation at relatively high pressures (90bar) and low temperatures (0 - 10 C)	Systems forming two liquid phases, one lean in CO_2 and one rich in CO_2 phase, resulting in lower recycle, higher CO_2/H_2O ratios. Thereby lower energy demand and creating possibility for pressurised desorption in smaller and less costly desorbers, thus lowering recompression cost. Hydrate process supported with thermodynamic promoters thus reducing needed pressure and increasing temperature range.

CO₂ capture by Hydrate formation

Tools From lab to pilot to industrial scale

P,V,T cells with gas, liquid and solid analyses - 2 for gas/liquid/solid phase envelop characterization -1 (under construction) for gas/solid phase transition studies Thermodynamic experiments and crystallisation (kinetic) experiments

Pilot flow loop for **rheological characterization** of gas hydrate slurries during crystallization under flow In line Cord Length Distribution, in line RAMAN and ATR

Industrial air-conditioning unit based on hydrate circulation

- highly concentrated slurry (40% vol.) rheological characterization
- slurry generator form cold scraped surfaces
- slurry generator (under constr.) from gas bubbling reactor Development of a prototype for CO2 capture

Innovative CO2 Capture, 7th FP, Cr. No 241391

TCCS6, Trondheim June 2011

<mark>q</mark>

CO₂ capture by liquid/liquid formation

Example of liquid/liquid system

TCCS6, Trondheim June 2011

WP1 Thermodynamic modeling

R&D area	State of the art	iCap advancements beyond the State of the Art
Thermodynamic Modeling of absorption systems	Equations of state and activity coefficient thermodynamic and property packages for single phase mixtures. Column models for single phase absorption and desorption.	Gas/liquid/liquid/solid equilibrium calculations for low and high pressure mixed solvent mixtures. Property packages for complex multi phase high pressure system with both precipitation and two liquid phase formation. Column models for multi phase complex mixtures including slurries. Theoretical expansion for slurry absorbers and desorbers.

Models for phase change systems

Liquid/liquid

- Tools exist
- account for new solvents
- account for electrolytes
- incorporation into simulator tools (CO2SIM, gPROMS)

Figure 4. LLE in the system decane + water. The experimental values are those of Economou et al.²⁴ PC-SAFT prediction; k_{ij} fit to water-rich phase (both with water parameters of this work) and ESD fit to decanerich phase.

Innovative CO₂ Capture, 7th FP, Cr. No 241391

CO₂ hydrate inhibition with methanol

- Tools exist
- account for promoters instead of inhibitors (e.g. THF)
- extension to more components (e.g. H_2S)
- Data from WP1

 — Slurry absorber will incorporate thermodynamic model and data from WP1 TCCS6, Trondheim June 2011

WP3:Combined CO₂ and SO₂ Removal

R&D area	State of the art	iCap advancements beyond the State of the Art
Combined SO ₂ /CO ₂ removal	The benchmark process for SO_2 removal is limestone slurry spray towers producing gypsum. Only SO_2 is removed. Cansolv has developed a process for the removal of SO_2 and CO_2 in one absorption column. However, two different liquid loops are used and the process is very complicated.	iCap is aims to develop a process where in one gas/liquid contacting step both SO_2 and CO_2 are removed. Current available SO_2 scrubbing spray towers can be modified to capture both SO_2 and CO_2 .By using step-wise regeneration, two different streams are obtained, one gypsum stream and one CO_2 stream. This CO_2 stream should contain no detectable SO_2 .

Ammonia for combined SOx and CO₂ capture

Experimental facility

- A lab scale absorption/stripping facility has been built
- Gas flow and liquid flow system are OK
- Water wash system is needed for ammonia volatility

Innovative CO_2 Capture, 7th FP , Cr. No 241391

TCCS6, Trondheim June 2011

Loy Yang Power Station PCC Pilot Plant, Victoria, Australia

ETIS support
Lignite
Amine based
No FGD/DeNox
Operational May 08

WP4: Membranes

R&D area	State of the art	iCap advancements beyond the State of the Art
Highly efficient and long term stable membranes for CO ₂ capture	<u>Low temperature separation</u> : CO_2 selective polymeric membranes designed for low fluxes; not stable in flue gas environment and subject to plasticization <u>High temperature separation</u> : H_2 selective micro-porous membranes not stable in steam operation. H_2 selective Pd based membranes not stable at high temperature, sensitive to CO. Limited feedstock. Limited operation temperature window. Not stable in carbon and/or steam containing atmospheres. Manufacturing and scalability challenging for all high temperature membranes	Low temperature separation:High performance ultra thin CO_2 membranesfunctionalized with nano-particles to increasethe flux through the membrane by affectingthe free volume of polymers.High temperature separation:Novel mixed conducting ceramic materialswill be engineered as chemically andmechanically robuste membranes. Thin densefilms on porous supports will be developed forreaching high fluxes.

Polymer-based CO₂ selective membrane

- Commercially available CO₂ selective membranes are pure polymers
 - low cost 🙂
 - Flexible and easy to scale up $\ensuremath{\textcircled{\odot}}$
 - plasticization at high CO_2 partial pressures \otimes
 - higher flux with sufficient selectivity 😕

High free volume polymer

Inorganic particles, functionalized inorganic particles

Nano-particles

50 n

Organic blanch

Inorganic core

TCCS6, Trondheim June 2011

Innovative CO2 Capture, 7th FP , Cr. No 241391

H₂ extraction in High Temperature Steam Methane Reforming

TCCS6, Trondheim June 2011

WP5: Technology evaluation

R&D area	State of the art	iCap advancements beyond the State of the Art
Technology	Gas turbines with very tight integration	Power cycle with gas turbines designed to
evaluation and	between compressor, combustor, and	incorporate CO_2 capture at elevated pressure.
Novel Power	turbine. Low CO_2 partial pressure in the	High CO ₂ partial cross-coupling or tandem
Cycles	exhaust gas. Limits to fuel gas hydrogen	coupling of two gas turbine cycles
	fraction in pre-combustion concepts,	
	because combustors are made for natural	
	gas.	

Aim and Scope of WP 5

 "Technology evaluation, cost and efficiency estimations, environmental impact, power cycles"

Potential Impact

Reduction of the efficiency penalty of CO₂ capture for power plants

- phase change solvents (WP1) with the ability to minimise energy requirement both in the capture plant and in the CO₂ recompression train
- combined SO₂ and CO₂ removal WP3 process intensification and debottlenecking from performance limitations
- polymeric and ceramic membranes (WP4) -inherently low efficiency penalty
- Combined with and integrated into novel power cycles concepts (WP5) resulting in highly efficient configurations (energy penalty <4% points)

Substantial decrease in capture cost

 reduction in capital and operational costs thought simplified, more compact and intensified capture plants, and reduction in fuel cost through more efficient highly integrated processes

Project Overview

Consortium

RTD providers	CSLF partners	End-Users
NTNU	CSIRO	DONG
TNO	THU	VTF AB
SINTEF		VTF AS
IFP		VTF R&D
DTU		EnBW
TUHH		
ARMINES		
PROCEDÉ		

Summary

- 15 partners
- 8 nationalities
- Total Budget 6.3 M€
- EC Funding 4.3 M€
- About 90% Financed
- Duration 48 Months
- Starting Date 01.01.10
- Kick off 17-18 of February 2010

Innovative CO2 Capture, 7th FP , Cr. No 241391

TCCS6, Trondheim June 2011

EU-China Workshop on Innovative CCS Technologies Beijing, China, 19-20 September 2011

From Fundamental R&D to Large-Scale Demonstration and Technology Deployment

Under the auspices of the iCap project and other EU funded R&D projects, jointly organised by the Norwegian University of Science and Technology and Tsinghua University.

NTNU – Trondheim Norwegian University of Science and Technology Scope and Objectives

EU-China Workshop on Innovative CCS Technologies

An EU–China Workshop on Innovative CCS Technologies will be held in Beijing hosted by Tsinghua University on Monday and Tuesday 19 and 20 of September 2011. The event is organised under the auspices of the Seventh Framework R&D programme funded by the European Commission.

The workshop aims to present recent advancements on carbon abatement technologies and disseminate results obtained from collaborative R&D activities between Europe and China within the EU funded projects iCap, CACHET II, CO2PipeHaz. The event will also bring together other on-going joint EU-Chinese CCS related initiatives, major Chinese R&D and demonstration projects and will form a unique knowledge sharing event for academia, R&D actors and industrial stakeholders active in the area of CCS. The conference is organised in conjunction with the CSLF Ministerial Meeting and will provide an excellent opportunity for promoting R&D results and interact with policy makers.

Workshops Announcement and Invitation

www.icapco2.org

The workshop will address critical areas of R&D currently being the focus of Sino-European collaborative activities such as:

- Phase change solvents and processes for post combustion \mbox{CO}_{2} capture
- Combined capture of CO₂ and SO₂
- High and low temperature membrane processes for CO₂ capture
- Fundamentals of CO₂ capture techniques
- Integration and techno-economic evaluations
- CO₂ transport challenges

Venue

The event is hosted by Tsinghua University and will take take place in Wenjin Hotel, Tsinghua Science Park, Beijing, China.

Participation

The event will be open for participation with a limited numbers of attendees up to 150–180. For more information please check out the project website for the upcoming announcements: www.icapC02.org, or send an email to icap@nt.ntnu.no

Tentative Workshop Programme

Monday Sept 19, 2011 0900–1200	Monday Sept 19, 2011 1300–1700
SESSION 1: Workshop Opening and General Addresses	SESSION 3: Phase change solvents
SESSION 2:	SESSION 4:
R&D Project outlines	Fundamentals
	DINNER
Tuesday Sept 20, 2011 0800-1200	Tuesday Sept 20, 2011 1300–1700
SESSION 1: High & Low	SESSION 3: Integration and
temperature membranes	techno-economic
SESSION 2: CO ₂ transport challenges	SESSION 4: International Pilot and demo activities

www.icapco2.org

www.icapco2.org

Tapir Uttrykk 🗾 🗤