BIGCCS Centre

Nils A. Røkke – Centre chair TCCS-6 15 June 2011

BIGCCS Centre in a nutshell

- Duration: 8 years (5+3)
- ≻Partners:

≻Web:

>Budget: NOK 450 mill, ~€57 million

22

- Funding: RCN: 50%, Ind.: 25%, Host: 25%
- Host inst.: SINTEF Energy Research
 - www.bigccs.no

International CCS Research Centre

BIGCCS Vision

The vision of the BIGCCS Centre is to contribute to the ambitious targets in the Climate Agreement Act adopted by the Norwegian Parliament in February 2008 – to increase the efforts in CCS.

BIGCCS Overall Objectives

- The BIGCCS Centre will enable sustainable power generation from fossil fuels based on cost-effective CO₂ capture, and safe transport and underground storage of CO₂.
- This will be achieved by building expertise and closing critical knowledge gaps of the CO₂ chain, and developing novel technologies in an extensive collaborative research effort.
- International co-operation, global CCS R&D provider and partner

BIGCCS Centre structure

CO₂ Capture Hydrogen Combustion

- Combustion of hydrogen rich mixtures, focus is on stable and safe flame propagation in lean pre-mixed (LPM) combustion at gas turbine condition
- Achievements: completed 1st direct numerical simulation (DNS) of a premixed H₂air flame
- Revealed a previously unknown feature of near-wall flame propagation
- Also observed experimentally by laboratory PIVmeasurements at TUM.

International CCS Research Centre

CO₂ Transport: CO₂ pipeline integrity

- The objective is to contribute to safe and cost effective CO₂ transport and avoid running ductile fractures in pipelines pressurised with CO₂ and CO₂ mixtures
- A fluid-structure fracture assessment model is under development:
 - Coupled structural and fluid models
 - Thermodynamical and fluid dynamical models
 - Thermodynamics for CO₂ and mixtures of CO₂
 - Phase transfer
 - Fluid dynamics
 - Numerical models
 - Fracture resistance models

SP3 CO₂ storage

qualification and management of storage

monitoring, leakage and remediation

storage behaviour

CO₂ Storage Qualification and management of storage resources Storage capacity estimation

- Static and dynamic models for storage capacity estimations need improvements.
- Case studies on realistic storage sites show strong dependence on boundary conditions (open, closed, partly open).

CO₂ saturation around injection wells Pressure development during same injection period

CO₂ Storage

Qualification and management of storage resources Storage capacity improvement

Water production for pressure management

- Additional opportunities for monitoring and remediation of possible leakage
- Case studies on pressure development (Johansen and Utsira) where pressure is being controlled by water production shows clear potential of improving storage capacity

CO₂ plume development with simultaneous

CO₂ Storage

Storage Behavior - Convective mixing of CO₂

- New rigorous theoretical results for onset time for convection.
- Theoretical and numerical up-scaling studies of convective mixing for homogenous and heterogeneous media.
- Planned 2D movie of convective mixing in 2D cell using Schlieren photography.

g

Onset of convection in layered aquifer

2D cell

BIGCCS - Chemical Looping Combustion (BIGCLC)

Foto:Steinar Fugelsøy, Adresseavisen

Target:150kW – pressurised vessel

BIGCCS International CCS Research Centre

SP5 BIGCCS Academia

BIGCCS Centre		Phase 1		Phase 2		Phase 3			Title Chart	Supervisor
	2009	2010	2011	2012	2013	2014	2015	2016	The - Short	Supervisor
SP1 - CO2 Capture										
Task 1.1: CO2 Separation			PhD						Absorption in precipitating systems	Andreassen
	PhD								Dyn. mod. of the absorption process	Hillestad
Task 1.2: High temp.		PhD							Char. of mixed proton cond. materials	Haugsrud
membranes		PhD							Membrane materials stability	Grande
Task 1.3: Hydrogen combustion		PhD							Efficient chemistry impl. hybrid comb.	Gran
	Post.doc								Valid. hybrid model against H2 flames	Gran
	PhD								Prevention of flame stabilization	Sattelmayer
	PhD PhD								Improv. syngas-air fine scale mixing	Sattelmayer
Task 1.4: Oxy-fuel		PhD							Oxy-combustion in CCS schemes	Gundersen
combustion							Post.doc		Pressurized oxy-fuel combustor	Gran
Task 1.5: Ind. applic.		PhD							Nano-structured (low T) membranes	Hägg
Task 1.6: Integrated			PhD						Mod. & integr. of reformer w/sorption	Jakobsen
assessment						Post.	doc		Benchmarking methods & processes	Bolland
SP2 - CO2 Transport										
Task 2.1: CO2 pipeline integrity			PhD						Thermo- & fluid dyn. mod. CO2 decompr.	Gran
					PhD				Mod. fracture resistance in pipelines	Thaulow
							Post.doc		Coupled structfluid models for crack	Thaulow
SP3 - CO2 Storage										
Task 3.1: Q&M storage	PhD								Num.screening tool for analysis of frac.	Holt
Task 3.2: Storage behaviour	PhD								Basic mechanisms for CO2 in porous	Torsæter
	PhD							CO2 displ. & storage in water-saturated	КІерре	
	Post.doc								Optimal design of CO2 injec. operation	Torsæter
Task 3.3: Monitoring, leakage and remediation	PhD								Geophysical method for CO2 storage	Landrø
	PhD								Detailed imaging of gas chimneys	Arntsen
	Post.doc								Advanced geophysical monitoring	Landrø
		PhD							Rock-physical properties for monitoring	Holt
						Post.	doc		Acoustic core measurem. 2-phase flow	Holt et al.
SP4 - CO2 Value Chain										
Task 4.1: Chain analysis			Post	.doc					Extended value chain analysis of CCS	Gundersen

International CCS Research Centre

Summary BIGCCS

- A global centre of gravity for CCS research
- 22 partners, whereof 10 industrial
- Targets international co-operation and has many international links embedded – but by no means closed for new links
- Has been successful in attracting new projects
 - Thermodynamics of CO2 mixtures
 - Chemical Looping Combustion
 - Basis for EU proposals
- Open for new industrial partners and research collaboration

Acknowledgements

This publication is produced with support from the BIGCCS Centre, performed under the Norwegian research program *Centres for Environment-friendly Energy Research (FME)*. The authors acknowledge the following partners for their contributions: Aker Solutions, ConocoPhilips, Det Norske Veritas AS, Gassco AS, GDF SUEZ, Hydro Aluminium AS, Shell Technology AS, Statkraft Development AS, Statoil Petroleum AS, TOTAL E&P Norge AS, and the Research Council of Norway (193816/S60).

