Longyearbyen CO₂-lab An integrated research and education laboratory

Alvar Braathen, Fred Skancke Hansen, Riko Noormets, Snorre Olaussen, Ragnhild Rønneberg, Gunnar Sand

Location Svalbard

- Coal mining community at 78° North.
- The world's northernmost settlement.
- Otherwise known as a research base for monitoring climate change:

The Svalbard scenario

- Coal fuelled community.
- Strict environmental laws and regulations.
 - Geological structures suited for CO2 storage. Closed energy system. Competence available in core project areas. International attention.

Our vision

- Let's follow the CO₂ from the source to the solution.
 - Let's develop high level, field based, university studies along the CCS chain.

The geology is favourable

Uplifted part of the Barents Sea

- Most of Svalbard is made up of sedimentary rocks.
- Continuation of the Barents Sea shelf of the Stokhman and Snow White fields.
 - They can store CO₂, oil-gas or groundwater.

Project development

- 2006: Vision of CO2 neutral Svalbard (Sand-Braathen).
 - 2007: Pre-project report submitted to DoJ.
 - 2007: Drilling well 1 & 2.
 2008: Cap rock verified.
 2009: Drilling well 3 & 4
 2009: Reservoir identified.
 2010: Injectivity verified.
 2011: CCS value chain PhD course introduced.

Kostbare signaler>> side 3Naboene har rømt>> side 8Galleriet går nye veier>> side 15

NR. 44 • FREDAG 6. NOVEMBER 2009 • ÅRGANG 61 PRIS KR 25 **SVALBARD** VERDENS VERDENS NORDLIGSTE AVIS

CO2-boring endelig vellykket

Reservoir properties

Gross Reservoir Unit 300m Porosity varies from 2 to 18% Permeability varies from 0,1 to 2 mD Highly fractured rock

Low pressure reservoir

First gross test interval (870m-970m) => 100m Net sandstone of the first test interval => 33m

300m Cored section of the potential reservoir unit (CO2 - storage unit); Upper Triassic to Middle Jurassic Shallow marine sandstones and shales

Log form A. Mørk, Sintef

TD 970m

DH-4

avearbve

10 10

2

30

2

7 1 9

6

11

lest ²

Sand-

stone

Interva

Dh 4

Top Reservoir 670m

700m

750m

800m

850m

900m

950m

Establishing seismic baseline

10

Establishing seismic base line during winter. (Explosives as source - minor harm to nature). Purpose; "Listen" to fracturing during test and for later monitoring. Both downhole sensors were put in the well and hung off at 855 m the night before this test started. The pressure was 61 bar and 28° C. The injection test lasted for 5 days (120 hours) and the injection rate was stable at 280 – 283 l/min.

Key questions ahead

Learning:

- Tight sandstone reservoir with permeable fracture system
- ✓ Unusual pressure gradients

After the pilot study, key questions are:

- 1) What is needed to map and understand the actual reservoir geometry (sand bodies, intrusions)?
- 2) Are fractures gradually expanding (not stepwise)
- Are permeable fractures penetrating the cap rocks? If so is what is the limit of the fracture pressure (LOT)
- 4) Is the entire reservoir section injective? Only the "worst" part tested
 - Conclusive injection tests this far only on the lower 100 m out of the 300 m section
- 5) Are shales of the reservoir section fractured and contributing to injectivity?

2011 program

- Activity 1: Testing of reservoir.
 - reducing uncertainty
 - acquire basic understanding
 - Activity 2: Investigate rock characteristics at 400 m.
 - Seal properties
 - Fluid flow.
 - Rock fracture, micro-
 - Activity 3: Seismic surveillance of reservoir.

N**ORS**AR

2011 program

- Activity 4: Experimental CO₂ injection
 - Activity 5: Baseline studies - marine geology

LIDAR interpretation of the lower and middle part of the reservoir as exposed in a seven kilometer long outcrop at Botneheia.

- Activity 6: Extended reservoir description
 - Detailed mapping of fracture frequencies and characteristics along different levels.
 - Combination of field work and modelling.
 - Activity 7: Second generation reservoir models and flow simulations
 - Assess impact of fracture geometries/properties and intrusions on reservoir storage capacity and flow patterns:
 - Perform sensitivity studies of reservoir flow vs. fracture characteristics.
 - Establish size and capacity of the under-pressured segment.

2011 program

- Activity 8: Plan key baseline studies and investments
 - Field lab development planning.
 - Surface monitoring planning.
 - Activity 9: Integrating project in national/international networks
 - Develop cooperation with national and international partners/networks
 - Activity 10: Outreach program
 - Scientific outreach
 - Public outreach

Educational programs (Master and PhD level)

AG-341: Introduction to CCS

- Following the coal value chain (10 ECTS).
- Global political challenges and agendas.
- Coal from generation, accumulation to production and energy supplier. Carbon capture strategies. Carbon storage strategies. Safety, -/HSE in Arctic. Field work/ Excursions.

Co-hosting the IEA CCS school

Longyearbyen, 2010

Next step: Carbon capture

- Pilot size capture facility.
- 5-10.000 tons per year

Demonstrate value chain + acquire CO2 for testing

No community conflicts

Our partners

The host institution

The University Centre in Svalbard

The world's northernmost institution for research and higher education

