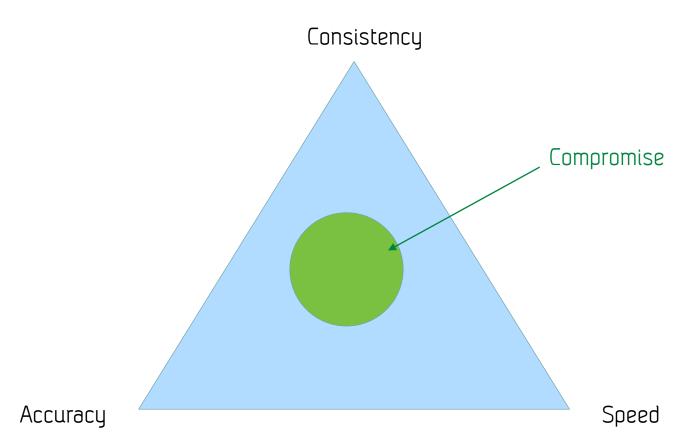
6'th Trondheim CCS-conference June 14-16 2011

Evaluation of the SPUNG Equation of State for use in Carbon Capture and Storage Modelling

Geir Skaugen^a Øivind Wilhelmsen^a, Oddvar Jørstad^b, Hailong Li^c

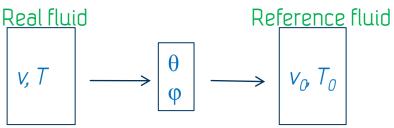
^a SINTEF Energy Research, Trondheim, Norway
^b Statoil Research Center, Trondheim, Norway
^c Mälardalen University, Västerås, Sweden



Outline of presentation

- Intro thermodynamic modeling
- Introduction and some theory on the Corresponding State Principle
- The use and performance of the SPUNG equation of state for $\rm CO_2$ and $\rm CO_2\textsc{-mixtures}$
- Summary

Thermodynamic modeling



Corresponding state principle

- Two fluids are in a corresponding state when the residual reduced Helmholtz Free Energy is equal for both fluids:
 - Reference fluid

- Important that the reference equation covers a wide range – and that the triple point is above the triple point of any mixtures
- Reference equation for state (T_o, v_o)
- Scaling functions θ and ϕ (shape factors)

• Mixing rules

Corresponding state principle – Scaling functions

Scaling function $\varphi(v,T)$ and $\theta(v,T)$ used to calculated scaling factors f_{ii} and h_{ii} $f_{ii} = T/T_0 = f_{ii}^{\ c} \ \theta(v,T)$ $h_{ii} = v/v_0 = h_{ii}^{\ c} \ \varphi(v,T)$

• <u>Constant scaling functions</u>

Equal reduced specific volume and temperature $v_{ri} = v_{r0}$ and $T_{ri} = T_{r0}$

- <u>Temperature dependent scaling functions</u> $P(v,T) = f_{ii}/h_{ii} P_0(v_0,T_0) \implies Z(p,T) = Z_0(p_0,T_0) \qquad <= SPUNG approach$
- <u>Temperature and density dependent</u> $Z = Z_0 - \frac{U_0}{RT_0} \left(\frac{\partial \ln f_{ii}}{\partial \ln v}\right)_T - (Z_0 - 1) \left(\frac{\partial \ln h_{ii}}{\partial \ln v}\right)_T$

Scaling factors from 2 parameter equation of state for mixtures

- Based of equal reduced Helmholtz Free Energy
- Temperature dependent mixture scaling factors (a_{ij} and b_i from EoS)

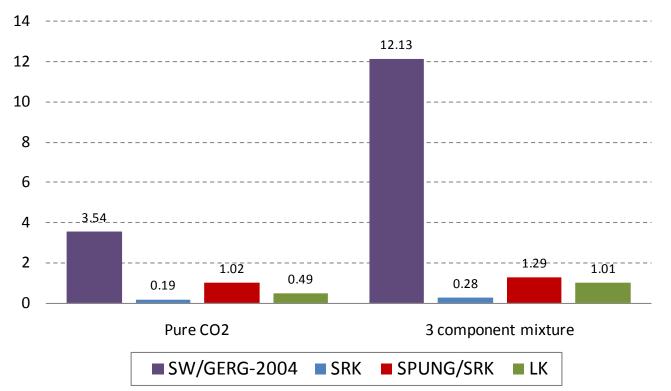
$$h = \frac{b_{\text{mix}}}{b_0} \qquad a_{\text{mix}} = \sum_i \sum_j n_i \cdot n_j \cdot a_{ij}$$
$$fh = \frac{a_{\text{mix}}(T)}{a_0(T_0)} \qquad a_{ij} = a_{ji} = \sqrt{a_i \cdot a_j} (1 - k_{ij})$$
$$b_{\text{mix}} = \sum_i n_i b_i$$

One adjustable parameter

- SPUNG approach:
 - Uses Cubic Equation of state for mixture and for the reference fluid to calculate the *h* and *f* factors . "Classic" mixing rules are used for the mixture.
 - Uses a 32-term MBWR EoS for calculation of properties for the reference fluid
 - Default reference fluid is Propane

Performance of the SPUNG EoS for CO_2 mixtures in terms of accuracy and calculation speed

- For pure CO₂
 - Comparison with the Span-Wagner equation of state
 - Density, specific heat capacity and speed of sound compared
 - SRK, Lee-Kesler (LK), GERG-2004 and SPUNG corresponding state methods
- CO₂ mixtures
 - Densities and liquid (x) / vapor (y) equilibrium from literature data
 - Comparison between
 - SRK,
 - SPUNG (Propane, 32-term MBWR)
 - Lee-Kesler (Densities)
 - GERG-2004/08 (NIST implementation)


7

Results

• The full results shown as graphs and tables in the TCCS oral presentation will be published in full in Energy Procedia

Time comparisons - 10000 random T,P in supercritical-, vapour- and liquid region

Computational time (sec)

Summary and conclusions

- An initial evaluation of the SPUNG extended corresponding state methodology for CO_2 and CO_2 -mixtures shows:
 - Increased accuracy possible for density compared to cubic and LK EOS especially in the liquid and critical region
 - Fully consistent thermodynamic relations
 - Calculation time acceptable
 - Only one parameter to fit when new experimental VLE data is available
- Further work ... evaluate:
 - Choice of reference equation
 - Choice of reference fluid
 - Choice of mixing rules

Thank you for your attention


Acknowledgement:

This work was financed through the CO₂ Dynamics project. The authors acknowledge the support from the Research Council of Norway (189978), Gassco AS, Statoil Petroleum AS and Vattenfall AB.

