Corrosion in Dense Phase CO₂ Pipelines – Three Reasons for Concern

Arne Dugstad

Institute for Energy Technology Kjeller, Norway www.ife.no *arne.dugstad@ife.no*

Co-authors: B. Morland, M. Halseid (IFE) S. Clausen (Gassco AS)

Issues to be addressed

- Motivation for studying corrosion in the pipeline
- State of the Art
- When can we get corrosion
- Experimental work
 - Corrosion, water < 500 ppmw
 - Corrosion in a separate water phase (water ingress)
 - Depressurization and the effect on the corrosivity

Need to define a safe operational window

Dense phase CO₂ transport, State of the Art

- CO_2 injection for EOR > 30 years (USA)
- More than 100 installations, more than 5000 km pipeline
- C-steel: Good experience with <u>clean and dry CO₂</u>
- Reported corrosion when water accumulates
- CRA: "Wet" CO₂, Sleipner, short distance
- Thousands of papers/corrosion studies for $pCO_2 < 20$ bar
- Few studies for $pCO_2 > 50$ bar
- Less than 5 publications presenting data with flue gas impurities
- Not much focus on corrosion in the CCS community (GHGT 10)

Will corrosion be a problem?

Good experiences with CO₂ transport in USA!

Is CCS different?

Concentrations of impurities in dried CO₂

	SO ₂	NO	H ₂ S	СО	$N_2 / Ar / O_2$		
COAL FIRED PLANTS							
Post- combustion capture	<100	<100	0	0	100		
			100-	300-	300-		
Pre-combustion capture(IGCC)	0	0	6 000	4 000	6 000		
Oxy-fuel	5 000	100	0	0	37 000		
GAS FIRED PLANTS							
Post-combustion capture	<100	<100	0	0	100		
Pre-combustion capture	0	0	<100	400	13 000		
Oxy-fuel	<100	<100	0	0	41 000		

Source: Intergovernmental Panel on Climate Change (IPCC)

Concentrations of impurities in dried CO₂

	SO ₂	NO	H ₂ S	СО	$N_2 / Ar / O_2$		
COAL FIRED PLANTS							
Post- combustion capture	<100	<100	0	0	100		
			100-	300-	300-		
Pre-combustion capture(IGCC)	0	0	6 000	4 000	6 000		
Oxy-fuel	5 000	100	20	", 1.5 r	n/s 00		
GAS FIRED PLANTS 100 ppmv 1000 tons/year							
Post-combustion capture	<100	<100	0				
Pre-combustion capture	0	0	<100	400	13 000		
Oxy-fuel	<100	<100	0	0	41 000		

Source: Intergovernmental Panel on Climate Change (IPCC)

Corrosion scenarios in dense phase CO₂ systems?

- Impurities and low water content
 - O₂
 - H₂S, S
 - CH₄, N₂, Ar ++
 - SO_x and NOx, CO
 - MEG, TEG, amines, salt
- Free water phase

Affects water solubility, the corrosion mechanisms and the phase properties +++

- Insufficient drying, water may condense/precipitate from the CO₂ phase
- Accidental/unforeseen water ingress
 Network and different sources
- Shut down, depressurization and accumulation
- Re-using existing infrastructure, deposits (UDC)

Autoclave experiments 200 - 550 bar

High pressure filling system Good mixing

Mobilization of corrosive phase (<10⁻³)

Loop experiments

Alloy C 276 Pressure: 200 bar Flow:0.1-3 m/s Iron counts Electrochemistry

Autoclave experiments, 100 bar, 25 °C

Exp. No:	IFE 4a	IFE 5a	IFE 5b	IFE 6a	IFE 6b	IFE 6c
H₂O, ppm wt	500	200	500	500	500	200
SO ₂ , ppm wt	0	500	500			
NO ₂ , ppm wt				500	200	100
Exposure, days	18	14	14	10	10	10
Weight loss Cor. rate, mm/y	<0.01	<0.01	0.02	1.6	0.7	0.17
Pitting attack		Y	Y			

 H_2O solubility ~ 1200 ppmw

500 ppmw NO₂ and H_2O

Corrosion rate 1.6 mm/y

50 um

Free water phase (50 vol%), stagnant conditions

Free water, flowing conditions, 100 bar

Partitioning

Partitioning coefficients (gas/liquid)

O ₂	H ₂ S	SO ₂	H ₂ O	
2.5-3	0.6-0.8	0.04-0.06	0.2-0.3	

Partitioning coefficients (gas/liquid)

O ₂	H ₂ S	SO ₂	H ₂ O	
2.5-3	0.6-0.8	0.04-0.06	0.2-0.3	

Water accumulation in the liquid CO₂ phase

Summary/Conclusion

- Non corrosive when the water content is significantly lower than the solubility limit in pure water and CO₂
- Corrosion can take place at water content less than 200 ppmw when SO₂ and/or NO₂ are present
- The corrosion rate in a free water phase can be huge, 10-50 mm/y
- O₂ destabilized the FeCO3 film and initiated localized attack
- Corrosivity can increases after depressurization as impurities like H₂O, SO₂, NO₂ accumulate in the remaining liquid CO₂ phase

State of the Art

- Not much focus on corrosion in CCS community
- Less than 5 publication actually reporting corrosion data in dense phase CO₂ with flue gas impurities
- Very little is known about the effect of impurities and particularly about mixed contaminants
- The lack of data makes it difficult to predict corrosion rates and define a safe operation window for transport of dense phase CO₂ originating from different sources with different contaminants
- Corrosion should be given more attention

Acknowledgement

• The authors would like to acknowledge Gassco AS for financial and technical support for parts of the presented work.

Consumption of reactants

50 C, 1 m/s

50 C, 3 m/s