# Corrosion of pipeline materials due to impurities in separated CO<sub>2</sub> from fossil fuelled power plants

Institute of Energy Systems Benedikt Paschke Alfons Kather



Hamburg University of Technology Institute of Energy Systems Supported by:



Federal Ministry of Economics and Technology

6th Trondheim Conference on CO<sub>2</sub> Capture, Transport and Storage, TCCS-6

Trondheim, Norway. June 14-16, 2011

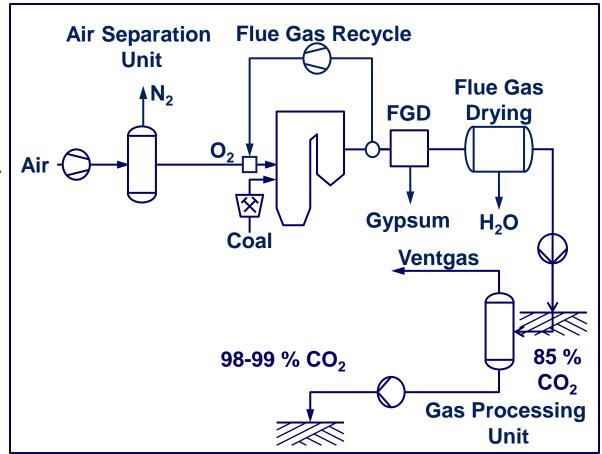
on the basis of a decision by the German Bundestag

#### Index



- 1. Motivation
- 2. CO<sub>2</sub>-Purity
- 3. Experimental Setup
  - 1. Test Rig
  - 2. Experimental Conditions
- 4. Results and Discussions
- 5. Conclusions
- 6. Outlook

#### **Motivation**




- Purity of separated CO<sub>2</sub> varies depending on the separation technology
  - ▶ Oxyfuel and Post-Combustion Capture  $\rightarrow$  oxidizing CO<sub>2</sub>-compositions
  - ▶ Pre-Combustion Capture  $\rightarrow$  reducing CO<sub>2</sub>-compositions
- Some impurities in the separated CO₂ can cause severe corrosion → purification may be required
- Higher purification correlates with higher expenditure of energy and/or capital
- Investigations are performed within the COORAL research project:
  - Overall objective: Define the required CO<sub>2</sub> purity for capture and storage (covering the whole chain from power plant to storage site)
  - Sub-objective: Determine the maximum permissible concentrations of impurities in the separated CO<sub>2</sub> stream for pipeline and compressor materials

## CO<sub>2</sub>-Purity



- Definition of different cases with varying gas compositions for experiments depending on the separation technology
- Three cases for Oxyfuel
  - ▶ "Zero Emission" (ZE)
  - "Purification"(Partial condensation)
  - "Rectification"
    (Partial condensation + Destillation)





| Component          | Zero Emission | Purification | Rectification |
|--------------------|---------------|--------------|---------------|
| CO <sub>2</sub>    | Rest          | Rest         | Rest          |
| N <sub>2</sub>     | 5,8 Vol%      | 0,71 Vol%    | 100 ppmv      |
| O <sub>2</sub>     | 4,7 Vol%      | 0,67 Vol%    | 100 ppmv      |
| Ar                 | 4,5 Vol%      | 0,59 Vol%    | 100 ppmv      |
| H <sub>2</sub> O   | 0-1000 ppmv   | 100 ppmv*    | 100 ppmv*     |
| NO+NO <sub>2</sub> | 100 ppmv      | 100 ppmv     | 100 ppmv      |
| $SO_2 + SO_3$      | 70 ppmv       | 70 ppmv      | 70 ppmv       |
| СО                 | 50 ppmv       | 50 ppmv      | 50 ppmv       |

\* Water content is limited to a maximum of 50–100 ppmv due to the low temperature of the purification process.

### **Experimental Setup**

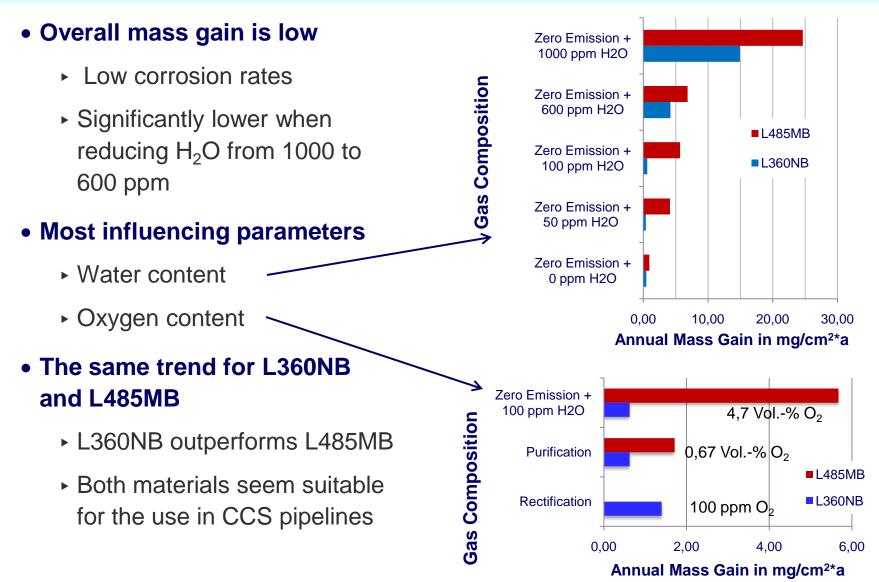


# • Test rig

- 2 Hastelloy autoclaves (1I)
- 1 Autoclave (290 ml) with window
- I Syringe pump
- 1 Thermostat

# • Experimental conditions

- Pressure: 110 bar
- ► Temperature: 60 °C
- Duration: 1 Week
- Materials
  - ► L360NB (1.0582)
  - ► L485MB (1.8977)








#### **Results I**





#### **Results II**

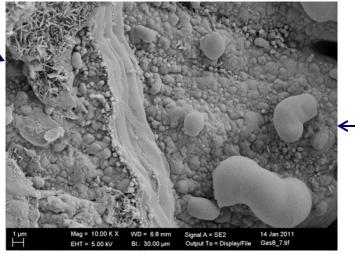


#### Oxide analysis with XRD

- Mixture of amorphous and crystalline species
- Only oxide being identified:
  α-FeOOH (Goethite)

#### Oxide analysis with SEM-EDX

- Primarily: Fe, O and little S
- Traces of: C, N
- Only uniform corrosion detected
  - No signs of pitting

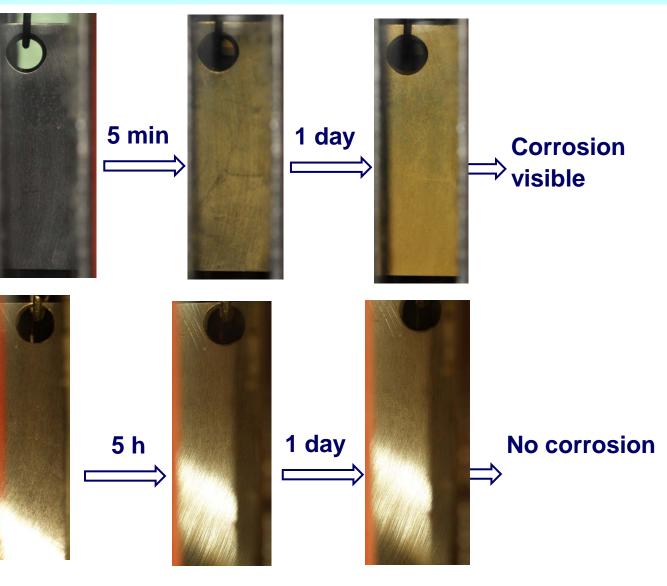

#### 0 ppm H<sub>2</sub>O 10

#### $100 \text{ ppm } \text{H}_2\text{O} \quad 1000 \text{ ppm } \text{H}_2\text{O}$





L485MB specimens in "Zero Emission"composition with varying water content after 1 week




SEM Image of the surface of a corroded L485MB specimen

#### **Influence of different Impurities**



• Zero Emission + 600 ppm H<sub>2</sub>O



CO<sub>2</sub> + 1000 ppm H<sub>2</sub>O + 4,7 Vol.-% O<sub>2</sub>

6th Trondheim Conference on CO<sub>2</sub> Capture, Transport and Storage, TCCS-6 Trondheim, Norway. June 14-16, 2011

#### Conclusions



- Either NO or SO<sub>2</sub> was required to initiate corrosion
- Traces of CO have only little or no effect on corrosion
- At least one of the following components should be minimized to reduce corrosion: H<sub>2</sub>O, O<sub>2</sub> or acid gas components (SO<sub>x</sub> and NO<sub>x</sub>)
- Water content should not exceed 600 ppm, 100 ppm or lower is beneficial
- L360NB and L485MB seem to be suitable for transporting impure CO<sub>2</sub> from Oxyfuel processes, whereas L360NB is advantageous

## Outlook



- Investigation of further materials (including compressor materials)
- Addition of post and pre combustion capture cases
  - Corrosion is expected to be lower because impurities are less for both technologies
- Determination of the influence of fluid flow
- Analysis of oxides and corrosion mechanism



#### Thank you for your attention!

Contact: Benedikt.paschke@tuhh.de

6th Trondheim Conference on  $CO_2$  Capture, Transport and Storage, TCCS-6 Trondheim, Norway. June 14-16, 2011