

Evaluation of Oxy-Coal Combustion Modelling at Semi-Industrial Scale

6th Trondheim CCS Conference June 14-16, 2011, Trondheim, Norway

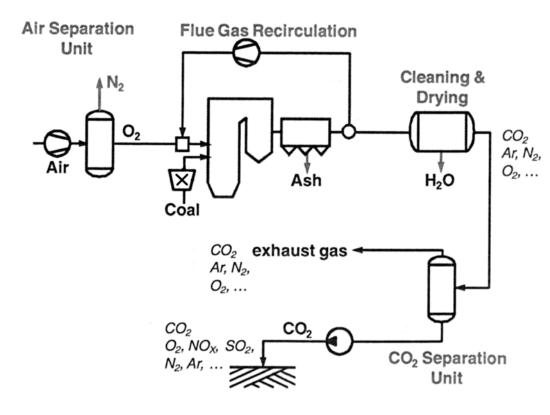
M. Müller, U. Schnell, S. Grathwohl, J. Maier, G. Scheffknecht

Institute of Combustion and Power Plant Technology, IFK, University of Stuttgart

Overview

- » Introduction
 - » oxy-fuel process
 - » modelling of coal combustion
- » Extended chemical reaction models
 - » homogeneous chemistry
 - » heterogeneous chemistry
- » Comparison of experiment and simulation
 - » test facility and operating conditions
 - » simulation results
- » Conclusions & Outlook

Overview

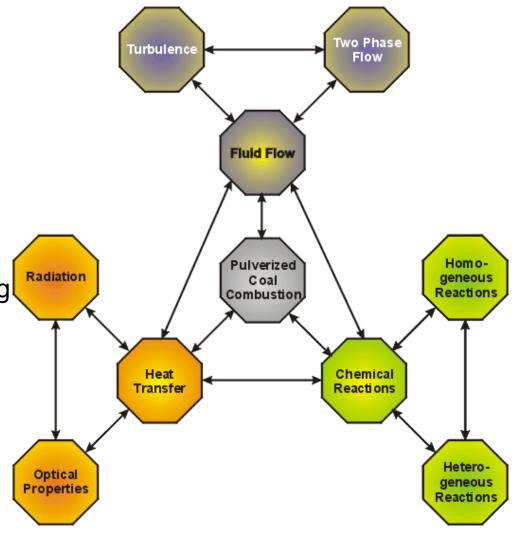

» Introduction

- » oxy-fuel process
- » modelling of coal combustion
- » Extended chemical reaction models
 - » homogeneous chemistry
 - » heterogeneous chemistry
- » Comparison of experiment and simulation
 - » test facility and operating conditions
 - » simulation results
- » Conclusions & Outlook

Oxy-fuel process

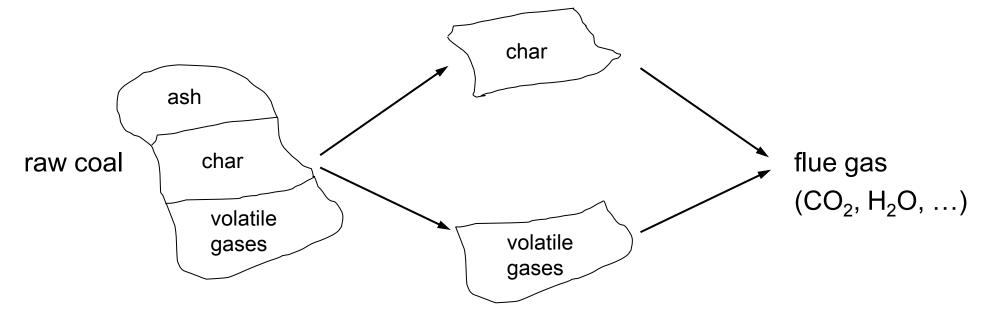
- » Specific conditions within oxy-fuel combustion process compared to conventional operation
- » modified composition of oxidizing atmosphere (mainly oxygen and recycled flue gas)
 - » thermo-physical properties
 - » flame characteristics
 - » emission behaviour
- » adjustments are required within CFD simulations

Modelling of coal combustion



» In-house developed CFD code

» specifically tailored for combustion simulation combining


- » fluid flow
- » heat transfer
- » chemical reactions

Modelling of coal combustion

- » Conversion process of pulverized coal combustion
 - » pyrolysis: primary and secondary reactions
 - » burnout of residual char
 - » combustion of volatile gases

- » objective of simulations:
 - » prediction of flow field, temperature distribution and relevant species concentrations

» Introduction

- » oxy-fuel process
- » modelling of coal combustion

» Extended chemical reaction models

- » homogeneous chemistry
- » heterogeneous chemistry
- » Comparison of experiment and simulation
 - » test facility and operating conditions
 - » simulation results
- » Conclusions & Outlook

Extended chemical reaction models

» Homogeneous chemistry (volatile combustion):

(1)
$$C_n H_m + n/2 O_2 \rightarrow n CO + m/2 H_2$$

(2) $C_n H_m + n H_2 O \rightarrow n CO + (m/2 + n) H_2$
(3) $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$
(4) $CO + H_2 O \rightarrow CO_2 + H_2$

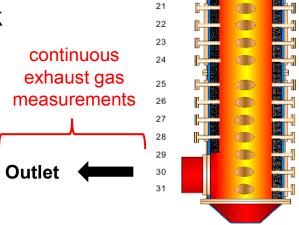
- » implementation of additional reactions and considering equilibrium reactions enables accounting for chemical effects of specifically high O₂ and CO₂ levels in the oxidizing atmosphere during oxy-fuel combustion
- » including reverse reaction of (3) is particularly required for correct prediction of local flame temperatures since equilibrium is shifted towards educts in high temperature flames

Extended chemical reaction models

» Heterogeneous chemistry (char burnout):

(1)
$$C + \frac{1}{2}O_2 \rightarrow CO$$
 (char oxidation)
(2) $C + CO_2 \rightarrow 2CO$ (Boudouard reaction)
(3) $C + H_2O \rightarrow CO + H_2$ (water-gas-shift reaction)

- » gasification reactions (2) and (3) may have major impact in O₂-lean regions due to higher partial pressures of CO₂ and H₂O compared to conventional air-firing
- at ambient pressure and typical combustion temperatures the reactions
 (2) and (3) may be considered irreversible since the equilibrium is shifted towards the product side



» Introduction

- » oxy-fuel process
- » modelling of coal combustion
- » Extended chemical reaction models
 - » homogeneous chemistry
 - » heterogeneous chemistry
- » Comparison of experiment and simulation
 - » test facility and operating conditions
 - » simulation results
- » Conclusions & Outlook

- » Atm. pulverized coal combustion rig
- » maximum thermal input 500 kW_{th}
- » vertically fired furnace with
 - » length: $\sim 7.0 \text{ m}$
 - » diameter: ~ 0.8 m
- » oxy-fuel operation:
 - » dry/wet flue gas recycling
 - » O₂ from external storage tank

Level

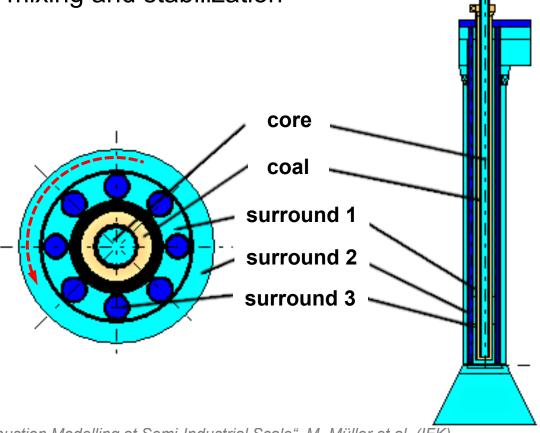
12

20

Inlet:

- carrier gas + coal
- combustion gas
- pre-heated air / RFG

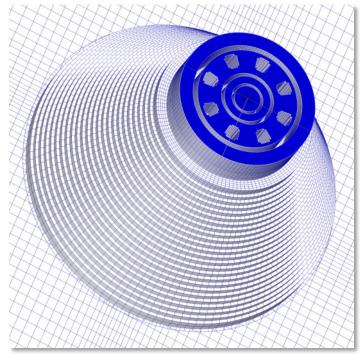
in-flame


measurements

» Burner layout:

- » four oxidizer inlets → highly flexible operation
- » swirl imposed in outer annular section "surround 2"

» bluff body included for mixing and stabilization



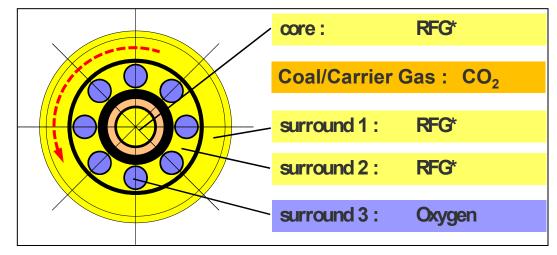
» Burner layout:

- » four oxidizer inlets → highly flexible operation
- » swirl imposed in outer annular section "surround 2"
- » bluff body included for mixing and stabilization

» computational mesh:

» detailed grid with about 2.2 x 10⁶ cells

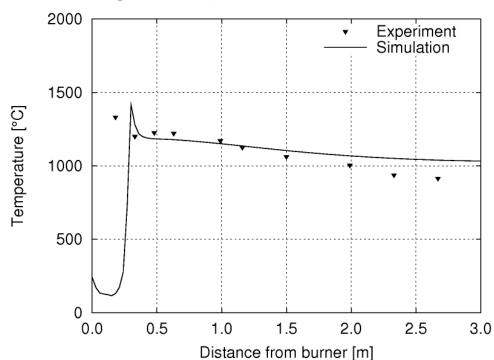



» Operational conditions:

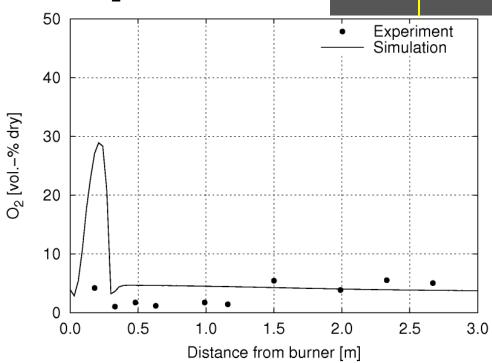
- » oxy-fuel and air case
- » fuel: hard coal Pittsburgh #1
- » thermal input: ~ 280 kW_{th}

» oxy-fuel test case:

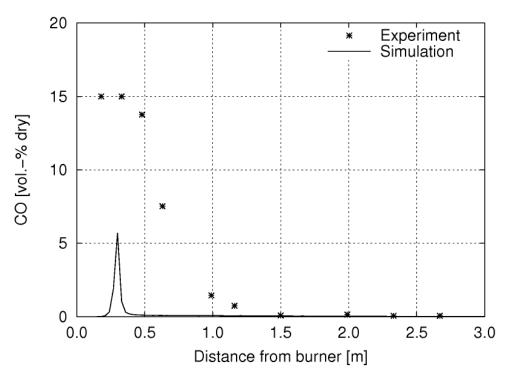
- » direct injection of O₂
- » wet flue gas recycling
- » total O_2 level: ~ 32 %
- » recycling rate: ~ 75 %



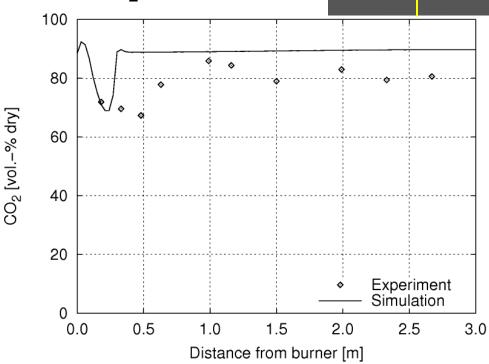
Oxy-fuel test case – simulation results



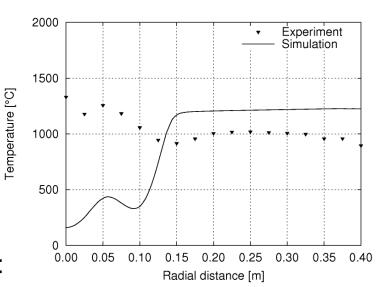
- » Oxy-fuel test case comparison
 - » axial plots on furnace centerline

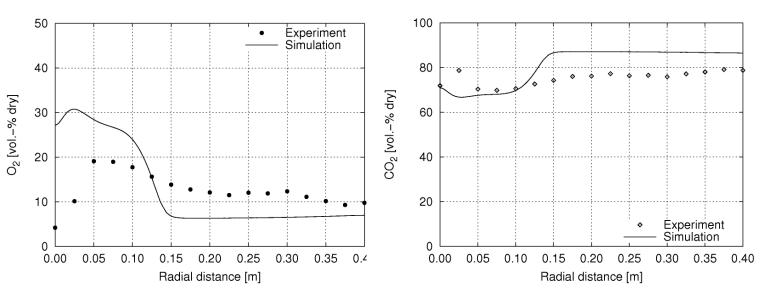


O₂ concentration:

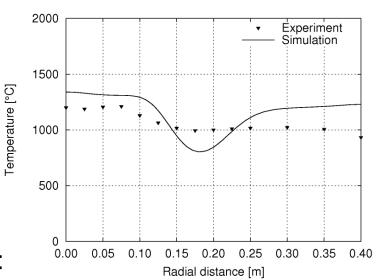


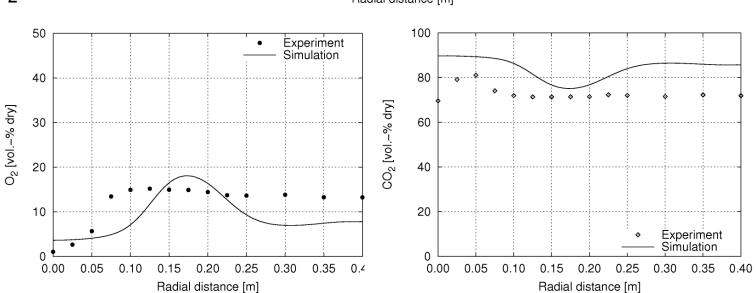
- » Oxy-fuel test case comparison
 - » axial plots on furnace centerline


» CO concentration:



CO₂ concentration:




- » Oxy-fuel test case comparison
 - » radial plots at 0.18 m below the burner (level 2)
 - » gas temperature:
 - \circ O₂ and CO₂ concentration:

- » Oxy-fuel test case comparison
 - » radial plots at 0.33 m below the burner (level 3)
 - » gas temperature:
 - \circ O₂ and CO₂ concentration:

» Introduction

- » oxy-fuel process
- » modelling of coal combustion
- » Extended chemical reaction models
 - » homogeneous chemistry
 - » heterogeneous chemistry
- » Comparison of experiment and simulation
 - » test facility and operating conditions
 - » simulation results
- » Conclusions & Outlook

Conclusions & Outlook

- » Evaluation of extended chemical reaction models against experiments at IFK's 500 kW_{th} test facility
 - » oxy-fuel case
 - » air-fired case
- » fundamental trends agree in both operation modes

→ improved reaction mechanisms work fine

» deviations are identified in near burner zone

- » simulations predict ignition too late
- » temperature, CO levels too low and delayed O₂ consumption
 - → flow field and mixing behaviour of particular burner design ???

Conclusions & Outlook

Next steps:

- » extensions regarding emission behaviour at oxy-fuel combustion conditions
 - » nitrogen chemistry (NO_x)
 - » sulphur chemistry (SO_x)
- » further validation against various facilities required
 - » 20 kW_{th} once through furnace (IFK)
 - » 500 kW_{th} test rig (IFK) operated with staged flame
 - » 30 MW_{th} oxy-fuel pilot plant at Schwarze Pumpe

