

3

APPROACH

Base-case Fuel oil No 1

- Provide experimental results
 - Fuel oil No 1
 - Lab-scale base-case of 90 kW
 - Both for air- and dry oxy-fuel operation
- Chemical kinetics for base-case
 - Come up with an appropriate reaction scheme
 - Perform simulations using CHEMKIN[©]

Fuel oil No 6/bunker

- Select representative fuel for the refinery case
- Design and commissioning of appropriate system
 - Able to handle selected quality of Fuel oil No 6
 - Lab-scale 150 kW
 - Primary/secondary heating system
- Run experimental matrix with on both air and O₂/CO₂

S International CCS Research Centre

Differences when switching from air to oxy-fuel combustion (coal)*

- To achieve a similar adiabatic flame temperature the O₂ concentration must be higher -> typically 30%, higher than that for air
- Require between 65-75 % flue gas recycling
- High concentrations of CO₂ and H₂O in the flue gas -> higher gas emissivities -> however comparable radiative heat transfer for oxy-fuel retrofit can be obtained with an O₂ concentration around 30 %.
- Oxy-fuel requires excess O₂ comparable to air firing meaning an O₂ concentration in the flue gas in the range of 3-5%.
- Increased concentration of minor species as a result of the recirculation.
- Increased density of flue gas: M_{CO2} > M_{N2}
- Increased heat capacity: Cp_{CO2} and Cp_{H2O} > Cp_{N2} leads to higher heat transfer in the convective section of the boiler.
- V_{oxy-fuel} < V_{air} (reduced by about 80 %.) leading to increased heat transfer in the radiative section of the boiler

*PECS oxy fuel review, 31, 283-307, 2005

Differences when switching from air to oxy-fuel combustion

Oxy-fuel Firing and Lessons Learned from the Demonstration of a Full-Sized Utility Scale 40MW OxyCoalTM Combustion System, South African Carbon Capture and Storage Conference, Johannesburg, 29th - 30th Sep 2009, G Hesselmann et al.

Factor	Air firing	Oxy-fuel	Implications
$CO_2 + H_2O$	0.3	0.9	Higher emissivity
H ₂ O/CO ₂	1	0.1 (wet)	
		0.3 (dry)	

International CCS Research Centre

Radiative and Convective Heat Transfer in Oxy Coal Combustion Transfer in Oxy Coal Combustion, John Smart Phil O'Nions Gerry Riley Ed Jamiesion John Smart, Phil O Nions, Gerry Riley, Ed Jamiesion, RWEnpower

Fundamentals of Oxy-Fuel Combustion, Prof Terry Wall Chemical Engineering, University of Newcastle, 2308, Australia Oxy-fuel Combustion Research Network Vattenfall Europe, Cottbus, Germany, 29/30 November 2005

NO_x controlling with oxy-fuel

- Difficult/costly to perfectly eliminate nitrogen in oxidant (up to 5 %) -> the NO_x emission control remains an issue.
- Three sources of N_2 :
 - Inherent N₂ in produced O₂
 - Inherent N₂ in fuel
 - Air leakage into furnace

Ditaranto et al.

- showed that the oxy-fuel combustion has a great potential to reduce NO_x emission.
- They observed that the NO_x emission is highly sensitive to air leaks into the combustion chamber.

Experimental matrix

Expermental matrix

Exp no	Lambda	O2 I/min	CO2 I/min	[O2] in oxidant	[CO2] in oxidant	[N2] in oxidant
Air 1-1	1.25	375		0.2095	-	0.7905
1-1	1.25	378	403	0.4815	0.5161	0.0024
1-2	1.25	378	459	0.4492	0.5485	0.0023
1-3	1.25	378	526	0.4159	0.5820	0.0021
1-4	1.25	378	612	0.3801	0.6180	0.0019
1-5	1.25	378	717	0.3435	0.6547	0.0017
Air 3-1	1.2	357		0.2095	-	0.7905
3-1	1.2	357	493	0.4180	0.5799	0.0021
3-2	1.2	357	526	0.4021	0.5959	0.0020
3-3	1.2	357	605	0.3693	0.6288	0.0019
3-4	1.2	357	701	0.3357	0.6626	0.0017
3-5	1.2	357	784	0.3113	0.6871	0.0016
Air 4-1	1.15	343		0.2095	-	0.7905
4-1	1.15	343	403	0.4575	0.5402	0.0023
4-2	1.15	343	459	0.4255	0.5723	0.0021
4-3	1.15	343	531	0.3906	0.6074	0.0020
4-4	1.15	343	612	0.3576	0.6406	0.0018
4-5	1.15	343	717	0.3221	0.6763	0.0016
Air 5-1	1.1	328		0.2095	-	0.7905
5-1	1.1	328	403	0.4460	0.5517	0.0022
5-2	1.1	328	459	0.4143	0.5836	0.0021
5-3	1.1	328	531	0.3797	0.6184	0.0019
5-4	1.1	328	612	0.3471	0.6512	0.0017
5-5	1.1	328	717	0.3121	0.6863	0.0016

Base-case

Measurement accuracy

CO2 + - 2%	0.98	Err NO	4.5
CO + - 2%	0.98	Err CO	5.5
02 + - 1%	0.99	Err O2	4.5
NOx (testo) + - 5%	0.95	Err CO2	5.5
NOx Horiba + - 1%	0.99	T_ad_calc	9.2
Kalibreringsgass: + - 2 %	0.98		
Rotametre (begge) + - 1,6 %	0.984		

Experimental results will be presented in a paper later this year

Base-case simulations

- The CHEMKIN PRO v4 chemical simulator was procured in 2010
- CHEMKIN is considered as the de facto standard simulation tool for solving complex chemical design problems
- Fuel oil No 1 = n-heptane
- A reduced mechanism from Lawrence Livermore National Laboratory (LLNL) was selected (No NO formation/reburning)
- The above was combined with GRI-Mech v3.0 -> 181 species and 1748 reactions
- The setup is a network of reactors where some of the flue gas is re-circulated back into the flame

Base-case simulations

Properties for All Reactors Reactor Properties Table Species-specific Data for All Reactors

						1	1	
Reactor Property	Units		Fill Row	Clear Row	InletMixing	Flame	C1_R3 PSR	Comchamber
Residence Time	sec	-	Fill	Clear	0.005	0.05	0.0005	0.1
Temperature	к	-	Fill	Clear	900.0	2000.0	900.0	1600.0
Pressure	atm	-	Fill	Clear	1.0	1.0	1.0	1.0
Volume	cm3	-	Fill	Clear				
Heat Loss	cal/sec	-	Fill	Clear		75.0	75.0	75.0
Heat Transfer Coefficient	cal/cm2-K-sec	-	Fill	Clear				
Ambient Temperature	к	-	Fill	Clear				
Surface Temperature	к	-	Fill	Clear				
Wall Heat Transfer Coefficient	cal/cm2-K-sec	-	Fill	Clear				
Wall Thermal Mass	cal/K	-	Fill	Clear				
Internal Surface Area	cm2	-	Fill	Clear				
External Surface Area	cm2	-	Fill	Clear				
Gas Reaction Rate Multiplier	none	-	Fill	Clear				

Please specify all the recycle ratios listed here and make sure that all recycle ratios originating from the same reactor sum to 1.0.

Sum of Recycle Fractions from Flame	1.0
Recycle Fraction from Flame to Comchamber	1.0
Sum of Recycle Fractions from C1_R3 PSR	1.0
Recycle Fraction from C1_R3 PSR to InletMixing	0.3
Recycle Fraction from C1_R3 PSR to Flame	0.7
Sum of Recycle Fractions from Comchamber	1.0
Recycle Fraction from Comchamber to C1_R3 PSR	0.3
Flow fraction from Comchamber to C2_PFR	0.7

R

Results from simulations will be presented in a paper later this year

Progressing from base case No. 1 fuel oil to No. 6 fuel oil/bunker fuel

13

Progressing from base case No. 1 fuel oil to No. 6 fuel oil/bunker fuel

14

Summary and status

- The No 6 fuel oil experiments are scheduled in June 2011
- The experimental matrix is planned around $\lambda = 1.1$ with varying CO₂ dilution.
- New 150 kW heavy oil burner arrive in mid-June
- Pre-heating system has been designed and build
- Five 200 liter barrels of Bunker C oil has been procured in Sweden a will arrive in Trondheim in mid-June

Summary and status

- Literature/experiments is scarce on heavy oil oxy-firing
- Much more research has been done on pulverized coal oxyfiring

Acceptable?

Thank you for your attention!

