

Prof. Dr. techn. G. Scheffknecht

Demonstration of the Calcium Looping Process: High Temperature CO₂ Capture with CaO in a 200 kW_{th} Dual Fluidized Bed Pilot Facility

Presented by: Heiko Dieter

Authors: Heiko Dieter, Craig Hawthorne

Trondheim TCCS-6 Conference, June 14-16th, 2011

- The Calcium Looping CO₂ Capture Process
- The 200 kW_{th} Calcium Looping Pilot Plant
- Pilot Plant Results
- Conclusions and Outlook

The Calcium Looping (CaL) Process

The Calcium Looping (CaL) Process

CO₂ Capture Costs¹:

- Over 90% CO₂ Capture efficiency demonstrated
- CO₂ Avoidance Cost ~ 20 €/t CO₂
- Cost of Electricity ~ 40 €/MWh
- Purged material can be efficiently utilized in cement or FGD processes

Electricity Generation²:

- Plant electric efficiency including CO₂ capture and compression calculated at 39.2%
 - 6.4% penalty
- Power output increases ~ 45%

R&D Calcium Looping Process Roadmap

200 kW_{th} DFB Calcium Looping Plant

Carbonator:

- Turbulent CFB Reactor
- Good gas-solid contact
- Lower entrainment than fast fluidized CFB
- Looping Rate controlled by L-valve
- Bottom loop seal regulates bed inventory
- Temperature controlled by Looping Rate and Fluidized Bed Heat Exchanger

Regenerator:

- Fast fluidized CFB calciner
- Temperature controlled by oxycombustion

Itk

Overview of Pilot Plant Operation

- 3 measurement campaigns completed with over 300 h of successful operation
- Dual Fluidized Bed system proved flexible and robust
 - Operated over a wide range of temperatures and looping rates
 - L-valve & loop seal system delivers stable sorbent looping rate

Overview of Pilot Plant Operation

- ıfk
- Over 90% capture efficiency achieved over a wide range of operating conditions
- Oxyfuel Regenerator performed well as a combustor:
 - High fuel burnout (low CO), good controlability and uniform temperature profiles
 - Complete calcination of incoming carbonated sorbent and make-up CaCO₃

System Response: Change in Inlet CO₂ Conc.

Ref: Hawthorne and Dieter, High Temperature CO_2 Capture with CaO in a 200 kW_{th} Dual Fluidized Bed Pilot Facility. 2nd Efficient Carbon Capture for Coal Power Plants, June 2011.

Every data point is a steady state where

- Solid samples taken & analyzed
- Circulation rate measured
- CO₂ capture measured

All capture efficiencies are close to maximum equilibrium value

Highest CO₂ capture achieved between 635-660°C for inlet concentrations of 10-15 Vol.-% CO₂

 Over 90% capture efficiency in steady state pilot operation

Calcium Looping process successfully demonstrated on a 200 kW_{th} pilot facility:

- CO₂ capture efficiency over 90 % achieved
- Plant showed robust performance and flexibility over 300 h of operation
- Full sorbent calcination in oxy-fired regenerator achieved
- Low sorbent loss due to attrition, i.e. ~ 5 wt.% bed/h

Recently obtained results and upcoming R&D topics:

- Influence of Make-up and steam content in flue gas on CO₂ capture efficiency
 - > Tests completed and will be published in the near future
- Influence of sulfur and coal ash on sorbent activity and pilot operation

Acknowledgements

The results from the 200 kW_{th} Calcium Looping pilot plant were produced as part of a joint university-industrial research & development project funded by EnBW Kraftwerke AG.

