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Chemical Looping principle

Chemical Looping Combustion (CLC):
A divided combustion process with intrinsic CO2 separation. An oxy-fuel process without the 
need of an oxygen plant (potential lower costs and higher net power efficiency)

Fuel Reactor (FR)
Reduction of the 
metallic oxygen carrier.
Endothermic or slightly 
exothermic.

Air Reactor (AR)
Oxidation of the 
metallic oxygen carrier.
Exothermic. 



Fossdal et al.,
“Study of inexpensive oxygen carriers for chemical looping combustion”
International Journal of Greenhouse Gas Control.

• $$$$
•U
•J
•J

Reactor system:
1. Cold Flow Model (CFM) construction, 

commissioning and testing for validation of the 
150kWth atmospheric rig design

2. 150kWth atmospheric rig construction, 
commissioning and test campaigns

3. Pressurized conditions

4

The BIGCLC project
A subproject within the larger BIGCO2/BIGCCS project framework

Oxygen carrier materials:
1. Screening and preliminary investigation
2. Selection and TGA testing (Mn-ore + Ca & Ti)
3. Fabrication by industrial methods
4. Testing in a small continuous FB process

Bischi et al.,
“Design study of a 150kWth Double Loop Circulating Fluidized Bed reactor 
system for Chemical Looping Combustion with focus on industrial applicability 
and pressurization”
International Journal of Greenhouse Gas Control.
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Design criteria

 High gas–solids contact 

 High solids exchange

 Flexibility of configuration

 Compactness

 Choose industrial solutions 
wherever possible 

 Continuous operation
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Design parameter AR 
150kWth

FR 
150kWth

uo [m/s] ~4 ~4

D [m] 0.25 0.15

L [m] 5 5

ρp [kg/m³] 2000 2000

ρf [kg/m³] 0.268 0.249

d50 [μm] 100 100

μ [Ns/m²] 4.84E-05 4.29E-05

T [°C] 1000 1000

P [Pa] 100000 100000

Design parameters

• Geldart Group A particles
• Fast fluidization flow regime
(CFB regime)



Glicksman scaling laws
 Simulating the hydrodynamics of a high temperature FB reactor with a smaller 

cold flow model

 Based on non-dimensional particles and fluid equations of motion

 A set of scaling parameters to be matched between actual reactor and model

 May impose different Geldart Group of particles and different flow regime

7Scaling criteria for fluidized bed hydrodynamics



Knowlton scale-up
1. Select operating regime

2. Construct a pilot plant (typical diameter 150 – 300 mm for group A particles)
 Continuous operation for significant time
 Industrial concerns can be addressed
 Reduced wall effects

3. Construct a large cold-flow model (generally larger than the pilot)

4. Construct a demonstration plant

5. Construct a commercial plant

 Flow regime and particle Geldart Group should be kept the same

8Scaling criteria for fluidized bed hydrodynamics
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Cold Flow 
Model

Hot Rig
150 kW

Industrial Demo ~30MW

• Geometrical identity
• Geldart A particles
• Fluidization regime:

Ar & Rep

• Simplified Glicksman Criteria:

• Geldart A particles

• Fluidization regime:
Ar & Rep

• Process parameters:
T, P, gas composition

• Same Particles:
Density, PSD, φ

• Fluidization regime:
Ar & Rep



10Cold Flow Model (CFM) scaling strategy

Cold Flow 
Model

Hot Rig
150 kW

Industrial Demo ~30MW

Lim, Zhu and Grace (1995)
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Cold Flow Model, full scale:
Air Reactor (AR): 

• 5m h, 0.23m id
• Nominal air flow: ~5500Nl/min (2.4m/s at 20ºC)

Fuel Reactor (FR): 
• 5m h, 0.14m id
• Nominal air flow: ~2400Nl/min (2.6m/s at 20ºC)

Air Reactor Loop-seal:
• Nominal air flow: ~165Nl/min

Fuel Reactor Loop-seal:
• Nominal air flow: ~95Nl/min

Fe-Si Powder:
Geldart group A

• Starting d50: 34micrometers
• Density: 7000kg/m3

• Total Solids Inventory (TSI): ~ 120kg

Experimental set-up
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Frequency controlled fan and filter 
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Experimental campaign overview

Design condition performance
• Operational performance and stability
• Validate design solutions

“Off-design” tests
• FR increased flux/concentration
• Part-load (50%)
• Simulate reforming conditions
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Bottom 
lifter

AR FR

AR: 5500Nl/min (2.4m/s)
Primary    Secondary 1    Secondary 2
55%         22.5% 22.5%

FR: 2400Nl/min (2.6m/s)
Primary    Secondary 1  Secondary 2
50%         42% 8%

Lift: 700Nl/min (1.5m/s)    
Primary          Secondary
~70%             ~30%

ARLS
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AR loop-seal

0

50

100

150

200

250

0 120 240 360 480 600 720 840
Time [s]

P
re

ss
ur

e 
re

la
tiv

e 
to

 a
m

bi
en

t [
m

ba
r]

P28
(P1+P2)/2
P15

 

FR loop-seal
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Conclusions & Outlook

1. Achievement of stable operation at design conditions of the DLCFB cold 
flow model:
• Solids flow above 2 kg/s → Solids flux (AR) 48 kg/m2s

2. Stable operation achieved at some defined off-design conditions:
• Increased FR solids concentration/entrainment
• Part load conditions
• Simulated reforming conditions

3. Integrate lessons learnt in the final design of the 150kWth hot rig
• Return leg height
• Increase in FR solids concentration/entrainment

4. Scaling strategy incorporating elements from both Glicksman and 
Knowlton; the 150 kWth hot rig (i.e. the next step of the BIGCLC project) and the 
existing large CFM will together give valuable guidelines and process and design 
validation for further up-scaling
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