AMP/PZ emissions

Maasvlakte pilot plant measurements and modelling

Bertus Bergsma

Arjen Huizinga, Eva Sanchez, Earl Goetheer, Jan Mertens (Laborelec)

a: TNO (Dutch Organisation for Applied Scientific Research)

E: bertus.bergsma@tno.nl
T: +31 8886 62 156
Content

› Pilot tests
 › Measurement campaign: corrosion, performance, emissions
 › Pilot configuration and measurement set-up
 › Settings
 › Results AMP/PZ

› Aspen Plus modelling
 › Comparison with literature
 › Comparison with pilot plant
 › Modelling of a double washing section
Pilot plant measurement set-up
Pilot plant measurement set-up

Flue gas details:
Connected to coal fired power plant
1250 m³/h flue-gas (@ 12% CO₂)
250 kg/h CO₂ capture
90% of CO₂ capture

Absorber:
8 m height
Dumped Packing: IMTP 50
Diameter: 650 mm

Wash section:
2 m height
Dumped Packing: IMTP 50
Cooled water recycle over bed
Pilot plant measurement set-up

- FT-IR (Laborelec) connected to clean gas exhaust of the pilot.
Settings

- Operation near 90% capture
- Variation of absorber temperature and wash water flow

Settings used:

<table>
<thead>
<tr>
<th>Wash flow (l/min)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean T (°C)</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>max</th>
<th>20</th>
<th>10</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>10</th>
<th>20</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

- Each setting maintained for 30-50 minutes
Pilot plant measurement set-up

- Measurement conditions:
 - Environmental permitting delayed until winter:
 - Demi water etc. frozen in periods of frost
Results: accuracy of readings

- Temperatures [°C], condensate tank level [%], PZ [mg/Nm³]

Flow: 0 10 20 max max 20 10
T: 40 40 40 40 35 35 35

AMP [mg/Nm³]

T: bed top T
T abs. out
condensate tank level
PZ
AMP

Flow: 0 10 20 max max 20 10
T: 40 40 40 40 35 35 35

AMP [mg/Nm³]

T: bed top T
T abs. out
condensate tank level
PZ
AMP

Flow: 0 10 20 max max 20 10
T: 40 40 40 40 35 35 35

AMP [mg/Nm³]

T: bed top T
T abs. out
condensate tank level
PZ
AMP

Flow: 0 10 20 max max 20 10
T: 40 40 40 40 35 35 35

AMP [mg/Nm³]

T: bed top T
T abs. out
condensate tank level
PZ
AMP

Flow: 0 10 20 max max 20 10
T: 40 40 40 40 35 35 35

AMP [mg/Nm³]

T: bed top T
T abs. out
condensate tank level
PZ
AMP

Flow: 0 10 20 max max 20 10
T: 40 40 40 40 35 35 35

AMP [mg/Nm³]

T: bed top T
T abs. out
condensate tank level
PZ
AMP

Flow: 0 10 20 max max 20 10
T: 40 40 40 40 35 35 35

AMP [mg/Nm³]

T: bed top T
T abs. out
condensate tank level
PZ
AMP
Results

› Process trends

(more results in modelling section)

<table>
<thead>
<tr>
<th>T<sub>lean</sub> AMP-PZ °C</th>
<th>40</th>
<th>40</th>
<th>40</th>
<th>35</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash flow l/min.</td>
<td>10</td>
<td>20</td>
<td>max</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>T abs. gas out °C</td>
<td>50.2</td>
<td>46.6</td>
<td>46.0</td>
<td>39.8</td>
<td>50.7</td>
</tr>
<tr>
<td>T top abs. bed °C</td>
<td>53.4</td>
<td>52.8</td>
<td>53.0</td>
<td>45.8</td>
<td>57.3</td>
</tr>
<tr>
<td>T wash-liq. in °C</td>
<td>29</td>
<td>38</td>
<td>39</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>H<sub>2</sub>O vol%</td>
<td>11.7</td>
<td>9.9</td>
<td>9.4</td>
<td>6.9</td>
<td>11.8</td>
</tr>
<tr>
<td>AMP mg/Nm<sup>3</sup></td>
<td>233</td>
<td>113</td>
<td>94</td>
<td>45</td>
<td>159</td>
</tr>
<tr>
<td>PZ mg/Nm<sup>3</sup></td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Capture percentage</td>
<td>92</td>
<td>89</td>
<td>88</td>
<td>88</td>
<td>89</td>
</tr>
</tbody>
</table>
Results: AMP trends

AMP emission

Lean temperature

AMP emission mg/Nm³

T over wash section [°C]
Results: AMP trends

Absorber top temperature

Lean temperature

Absorber top temperature (gas-phase) [°C]

T over wash section [°C]
Aspen Plus modelling

- Starting point: merged, unaltered AMP-PZ model (Aspen Plus)
- Comparison pure component vapour pressures with literature: exact match
- Model structure
- Comparison with pilot
Aspen modelling: model set-up

- Only absorber and wash section modelled
- Wash section: 2 equilibrium stages
- Absorption: 3 stages at 70% of equilibrium: ~90% capture
- Emissions very temperature dependent: absorber top temperature and Cleangas out temperature are input (solvent flow and wash flow used to attain T’s)
- All parameters of column input streams are input data to simulation (except for solvent and wash flows)
Aspen modelling

Results one setting:
~25 l/min wash, lean T: 40°C
Aspen modelling

- **Results at 40°C lean temperature** *(blue numbers: model)*
 - Capture trend OK
 - Calculated wash- and lean solvent flows near to pilot readings
 - Absolute value AMP emission close to Aspen readings
 - The AMP results of model and pilot being close *indicates* that no significant entrainment has occurred.

<table>
<thead>
<tr>
<th>T(lean) °C</th>
<th>Wash flow l/min</th>
<th>AMP mg/Nm³</th>
<th>PZ mg/Nm³</th>
<th>H₂O vol%</th>
<th>Capture %</th>
<th>Tg Abs, out °C</th>
<th>Tg wash out °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>10</td>
<td>233</td>
<td>12</td>
<td>11.7</td>
<td>92%</td>
<td>50.2</td>
<td>53.4</td>
</tr>
<tr>
<td>40</td>
<td>8.4</td>
<td>273</td>
<td>22</td>
<td>12.2</td>
<td>90%</td>
<td>50.2</td>
<td>53.9</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
<td>113</td>
<td>14</td>
<td>9.9</td>
<td>89%</td>
<td>46.6</td>
<td>52.8</td>
</tr>
<tr>
<td>40</td>
<td>max</td>
<td>119</td>
<td>10</td>
<td>10.3</td>
<td>90%</td>
<td>46.6</td>
<td>53.1</td>
</tr>
<tr>
<td>40</td>
<td>26.4</td>
<td>94</td>
<td>15</td>
<td>9.4</td>
<td>88%</td>
<td>46.0</td>
<td>53.0</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>102</td>
<td>8</td>
<td>10</td>
<td>90%</td>
<td>46.0</td>
<td>53.1</td>
</tr>
</tbody>
</table>
Aspen modelling

Results summary: parity plots

- Good fit AMP results
- PZ: range is OK
Aspen modelling

Results for a double washing section

- Washing sections do not work if they are not cooled or fed with clean water
- Very high AMP and PZ washing efficiency possible
- Wash flow and cooling duty very high: optimisation needed
 (extra benefit: closed water balance)

Result for 800 MW ASC with capture plant:

<table>
<thead>
<tr>
<th>section:</th>
<th>Absorption</th>
<th>lower wash</th>
<th>higher wash</th>
</tr>
</thead>
<tbody>
<tr>
<td>T gas out °C</td>
<td>60</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>T liquid in °C</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>liquid feed flow kg/s</td>
<td>1300</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>AMP mg/Nm³</td>
<td>3875</td>
<td>46</td>
<td>0.16</td>
</tr>
<tr>
<td>PZ mg/Nm³</td>
<td>298</td>
<td>1.4</td>
<td>0.00</td>
</tr>
</tbody>
</table>
General conclusions

› Operation near steady state due to short measurement times

› Some fluctuations in especially PZ emission, likely due to stripper operation.

› Fair washing efficiencies for AMP with different wash water flows

› Emission could be lowered further with more cooling

› Results Aspen simulation in fair agreement with pilot results
 › An indication that entrainment is very limited: further research needed
 › Aspen can be used to evaluate double wash section for AMP/PZ
Acknowledgements:

The research leading to these results has received funding from the projects CESAR and CLEO.

The authors are thankful to all the CESAR and CLEO partners for their contribution to this work.

Special thanks to Jan Mertens and his team (Laborelec) for the FT-IR measurements and interpretation.